Taştan, A. ; Muma, M. ; Zoubir, A. M. (2021)
Robust Regularized Locality Preserving Indexing for Fiedler Vector Estimation.
doi: 10.48550/arXiv.2107.12070
Report, Bibliographie
Kurzbeschreibung (Abstract)
The Fiedler vector of a connected graph is the eigenvector associated with the algebraic connectivity of the graph Laplacian and it provides substantial information to learn the latent structure of a graph. In real-world applications, however, the data may be subject to heavy-tailed noise and outliers which results in deteriorations in the structure of the Fiedler vector estimate. We design a Robust Regularized Locality Preserving Indexing (RRLPI) method for Fiedler vector estimation that aims to approximate the nonlinear manifold structure of the Laplace Beltrami operator while minimizing the negative impact of outliers. First, an analysis of the effects of two fundamental outlier types on the eigen-decomposition for block affinity matrices which are essential in cluster analysis is conducted. Then, an error model is formulated and a robust Fiedler vector estimation algorithm is developed. An unsupervised penalty parameter selection algorithm is proposed that leverages the geometric structure of the projection space to perform robust regularized Fiedler estimation. The performance of RRLPI is benchmarked against existing competitors in terms of detection probability, partitioning quality, image segmentation capability, robustness and computation time using a large variety of synthetic and real data experiments.
Typ des Eintrags: | Report |
---|---|
Erschienen: | 2021 |
Autor(en): | Taştan, A. ; Muma, M. ; Zoubir, A. M. |
Art des Eintrags: | Bibliographie |
Titel: | Robust Regularized Locality Preserving Indexing for Fiedler Vector Estimation |
Sprache: | Englisch |
Publikationsjahr: | 26 Juli 2021 |
Verlag: | arXiv |
Reihe: | Electrical Engineering and Systems Science |
Kollation: | 40 Seiten |
DOI: | 10.48550/arXiv.2107.12070 |
URL / URN: | https://arxiv.org/abs/2107.12070 |
Kurzbeschreibung (Abstract): | The Fiedler vector of a connected graph is the eigenvector associated with the algebraic connectivity of the graph Laplacian and it provides substantial information to learn the latent structure of a graph. In real-world applications, however, the data may be subject to heavy-tailed noise and outliers which results in deteriorations in the structure of the Fiedler vector estimate. We design a Robust Regularized Locality Preserving Indexing (RRLPI) method for Fiedler vector estimation that aims to approximate the nonlinear manifold structure of the Laplace Beltrami operator while minimizing the negative impact of outliers. First, an analysis of the effects of two fundamental outlier types on the eigen-decomposition for block affinity matrices which are essential in cluster analysis is conducted. Then, an error model is formulated and a robust Fiedler vector estimation algorithm is developed. An unsupervised penalty parameter selection algorithm is proposed that leverages the geometric structure of the projection space to perform robust regularized Fiedler estimation. The performance of RRLPI is benchmarked against existing competitors in terms of detection probability, partitioning quality, image segmentation capability, robustness and computation time using a large variety of synthetic and real data experiments. |
Zusätzliche Informationen: | 1.Version |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Robust Data Science 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung |
Hinterlegungsdatum: | 27 Jul 2021 09:19 |
Letzte Änderung: | 19 Dez 2024 10:28 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |