TU Darmstadt / ULB / TUbiblio

Cycle parameter dependent degradation analysis in automotive lithium-ion cells

Storch, Mathias ; Fath, Johannes Philipp ; Siegmann, Johannes ; Vrankovic, Dragoljub ; Mullaliu, Angelo ; Krupp, Carsten ; Spier, Bernd ; Passerini, Stefano ; Riedel, Ralf (2021)
Cycle parameter dependent degradation analysis in automotive lithium-ion cells.
In: Journal of Power Sources, 506
doi: 10.1016/j.jpowsour.2021.230227
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In this study, we report on the operational parameter dependent degradation mechanisms occurring in cycled large-format automotive lithium-ion cells. The comprehension of these mechanisms is a prerequisite for design and operation of long-life lithium-ion cells. The degradation mechanisms are evaluated in dependence of cycle temperature, cut-off voltage, depth of discharge and discharge current, performing an extensive post-mortem analysis on cells subjected to a one-year-long cycle test. The main degradation mechanisms in the cells cycled at 60 °C are the large formation of gas, gas-assisted lithium plating, and, additionally, temperature-accelerated growth of the solid electrolyte interphase (SEI), as revealed by XPS depth-profiling. The growth of the SEI is intensified by using higher cut-off voltages, while transition metal dissolution is observed via STEM. The manganese ions incorporate into the SEI, causing a strong blue coloration of the anodes’ surface. The major effect in the cells cycled at high depth of discharge is the loss of cathode active material, as revealed by ICP-OES, XRD, and FIB-SEM measurements. The variation of the discharge current has no effect on the type of degradation mechanism occurring in the cells cycled at 20% depth of discharge.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Storch, Mathias ; Fath, Johannes Philipp ; Siegmann, Johannes ; Vrankovic, Dragoljub ; Mullaliu, Angelo ; Krupp, Carsten ; Spier, Bernd ; Passerini, Stefano ; Riedel, Ralf
Art des Eintrags: Bibliographie
Titel: Cycle parameter dependent degradation analysis in automotive lithium-ion cells
Sprache: Englisch
Publikationsjahr: 15 September 2021
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Power Sources
Jahrgang/Volume einer Zeitschrift: 506
DOI: 10.1016/j.jpowsour.2021.230227
Kurzbeschreibung (Abstract):

In this study, we report on the operational parameter dependent degradation mechanisms occurring in cycled large-format automotive lithium-ion cells. The comprehension of these mechanisms is a prerequisite for design and operation of long-life lithium-ion cells. The degradation mechanisms are evaluated in dependence of cycle temperature, cut-off voltage, depth of discharge and discharge current, performing an extensive post-mortem analysis on cells subjected to a one-year-long cycle test. The main degradation mechanisms in the cells cycled at 60 °C are the large formation of gas, gas-assisted lithium plating, and, additionally, temperature-accelerated growth of the solid electrolyte interphase (SEI), as revealed by XPS depth-profiling. The growth of the SEI is intensified by using higher cut-off voltages, while transition metal dissolution is observed via STEM. The manganese ions incorporate into the SEI, causing a strong blue coloration of the anodes’ surface. The major effect in the cells cycled at high depth of discharge is the loss of cathode active material, as revealed by ICP-OES, XRD, and FIB-SEM measurements. The variation of the discharge current has no effect on the type of degradation mechanism occurring in the cells cycled at 20% depth of discharge.

Freie Schlagworte: Lithium-ion battery, Cycle aging, Post-mortem analysis, Solid electrolyte interphase, Transition metal dissolution, Cathode degradation
Zusätzliche Informationen:

Mercedes-Benz AG, (Stuttgart, Germany), Deutsche Accumotive GmbH & Co. KG (Kamenz, Germany), BatterieIngenieure GmbH, (Aachen, Germany), NMI Naturwissenschaftliches und Medizinisches Institut, Universität Tübingen (Reutlingen, Germany), SGS Fresenius Institut (Dresden, Germany), Ulm university (Ulm, Germany), Helmholtz Association

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
TU-Projekte: HA(Hessen Agentur)|849/20-09|Re2LiB
Hinterlegungsdatum: 27 Jul 2021 05:29
Letzte Änderung: 14 Sep 2022 06:38
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen