Storch, Mathias ; Fath, Johannes Philipp ; Siegmann, Johannes ; Vrankovic, Dragoljub ; Mullaliu, Angelo ; Krupp, Carsten ; Spier, Bernd ; Passerini, Stefano ; Riedel, Ralf (2021)
Cycle parameter dependent degradation analysis in automotive lithium-ion cells.
In: Journal of Power Sources, 506
doi: 10.1016/j.jpowsour.2021.230227
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
In this study, we report on the operational parameter dependent degradation mechanisms occurring in cycled large-format automotive lithium-ion cells. The comprehension of these mechanisms is a prerequisite for design and operation of long-life lithium-ion cells. The degradation mechanisms are evaluated in dependence of cycle temperature, cut-off voltage, depth of discharge and discharge current, performing an extensive post-mortem analysis on cells subjected to a one-year-long cycle test. The main degradation mechanisms in the cells cycled at 60 °C are the large formation of gas, gas-assisted lithium plating, and, additionally, temperature-accelerated growth of the solid electrolyte interphase (SEI), as revealed by XPS depth-profiling. The growth of the SEI is intensified by using higher cut-off voltages, while transition metal dissolution is observed via STEM. The manganese ions incorporate into the SEI, causing a strong blue coloration of the anodes’ surface. The major effect in the cells cycled at high depth of discharge is the loss of cathode active material, as revealed by ICP-OES, XRD, and FIB-SEM measurements. The variation of the discharge current has no effect on the type of degradation mechanism occurring in the cells cycled at 20% depth of discharge.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2021 |
Autor(en): | Storch, Mathias ; Fath, Johannes Philipp ; Siegmann, Johannes ; Vrankovic, Dragoljub ; Mullaliu, Angelo ; Krupp, Carsten ; Spier, Bernd ; Passerini, Stefano ; Riedel, Ralf |
Art des Eintrags: | Bibliographie |
Titel: | Cycle parameter dependent degradation analysis in automotive lithium-ion cells |
Sprache: | Englisch |
Publikationsjahr: | 15 September 2021 |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of Power Sources |
Jahrgang/Volume einer Zeitschrift: | 506 |
DOI: | 10.1016/j.jpowsour.2021.230227 |
Kurzbeschreibung (Abstract): | In this study, we report on the operational parameter dependent degradation mechanisms occurring in cycled large-format automotive lithium-ion cells. The comprehension of these mechanisms is a prerequisite for design and operation of long-life lithium-ion cells. The degradation mechanisms are evaluated in dependence of cycle temperature, cut-off voltage, depth of discharge and discharge current, performing an extensive post-mortem analysis on cells subjected to a one-year-long cycle test. The main degradation mechanisms in the cells cycled at 60 °C are the large formation of gas, gas-assisted lithium plating, and, additionally, temperature-accelerated growth of the solid electrolyte interphase (SEI), as revealed by XPS depth-profiling. The growth of the SEI is intensified by using higher cut-off voltages, while transition metal dissolution is observed via STEM. The manganese ions incorporate into the SEI, causing a strong blue coloration of the anodes’ surface. The major effect in the cells cycled at high depth of discharge is the loss of cathode active material, as revealed by ICP-OES, XRD, and FIB-SEM measurements. The variation of the discharge current has no effect on the type of degradation mechanism occurring in the cells cycled at 20% depth of discharge. |
Freie Schlagworte: | Lithium-ion battery, Cycle aging, Post-mortem analysis, Solid electrolyte interphase, Transition metal dissolution, Cathode degradation |
Zusätzliche Informationen: | Mercedes-Benz AG, (Stuttgart, Germany), Deutsche Accumotive GmbH & Co. KG (Kamenz, Germany), BatterieIngenieure GmbH, (Aachen, Germany), NMI Naturwissenschaftliches und Medizinisches Institut, Universität Tübingen (Reutlingen, Germany), SGS Fresenius Institut (Dresden, Germany), Ulm university (Ulm, Germany), Helmholtz Association |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe |
TU-Projekte: | HA(Hessen Agentur)|849/20-09|Re2LiB |
Hinterlegungsdatum: | 27 Jul 2021 05:29 |
Letzte Änderung: | 14 Sep 2022 06:38 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |