TU Darmstadt / ULB / TUbiblio

Model Reduction for Heat Grid State Estimation

Bott, Andreas ; Friedrich, Pascal ; Rehlich, Lea ; Steinke, Florian (2021)
Model Reduction for Heat Grid State Estimation.
2021 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). virtual Conference (18.10.2021-21.10.2021)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Traditional district heating networks have been built around few central heat production units. Now, many more decentral heat sources based on renewable energies or waste heat are being included to reduce carbon emissions. Given the resulting complex flow patterns in the network reliable and fast heat grid state estimation becomes mandatory for efficient grid control. In this paper we first show an approach to reduce computational efforts for various grid computations by summarising pipe segments of the network. We then develop a probabilistic state estimator based on the reduced model by locally linearising the non-linear grid equations around the best state estimate. We show that the linearisation approach with a significantly lower computational burden achieves a prediction quality comparable to those of a sampling-based Monte-Carlo approach that uses the full model. This allows state estimation to become an online routine even in complex heating networks.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Bott, Andreas ; Friedrich, Pascal ; Rehlich, Lea ; Steinke, Florian
Art des Eintrags: Bibliographie
Titel: Model Reduction for Heat Grid State Estimation
Sprache: Englisch
Publikationsjahr: 2021
Veranstaltungstitel: 2021 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 18.10.2021-21.10.2021
Kurzbeschreibung (Abstract):

Traditional district heating networks have been built around few central heat production units. Now, many more decentral heat sources based on renewable energies or waste heat are being included to reduce carbon emissions. Given the resulting complex flow patterns in the network reliable and fast heat grid state estimation becomes mandatory for efficient grid control. In this paper we first show an approach to reduce computational efforts for various grid computations by summarising pipe segments of the network. We then develop a probabilistic state estimator based on the reduced model by locally linearising the non-linear grid equations around the best state estimate. We show that the linearisation approach with a significantly lower computational burden achieves a prediction quality comparable to those of a sampling-based Monte-Carlo approach that uses the full model. This allows state estimation to become an online routine even in complex heating networks.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Energieinformationsnetze und Systeme (EINS)
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik
Forschungsfelder
Forschungsfelder > Energy and Environment
Forschungsfelder > Energy and Environment > Integrated Energy Systems
Hinterlegungsdatum: 26 Jul 2021 10:54
Letzte Änderung: 12 Nov 2021 12:05
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen