TU Darmstadt / ULB / TUbiblio

Multifunctional antiperovskites driven by strong magnetostructural coupling

Singh, Harish K. ; Samathrakis, Ilias ; Fortunato, Nuno M. ; Zemen, Jan ; Shen, Chen ; Gutfleisch, Oliver ; Zhang, Hongbin (2021)
Multifunctional antiperovskites driven by strong magnetostructural coupling.
In: npj Computational Materials, 7 (1)
doi: 10.1038/s41524-021-00566-w
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Based on density functional theory calculations, we elucidated the origin of multifunctional properties for cubic antiperovskites with noncollinear magnetic ground states, which can be attributed to strong isotropic and anisotropic magnetostructural coupling. Of 54 stable magnetic antiperovskites M3XZ (M = Cr, Mn, Fe, Co, and Ni; X = selected elements from Li to Bi except for noble gases and 4f rare-earth metals; and Z = C and N), 14 are found to exhibit the Γ4g/Γ5g (i.e., characterized by irreducible representations) antiferromagnetic magnetic configurations driven by frustrated exchange coupling and strong magnetocrystalline anisotropy. Using the magnetic deformation as an effective proxy, the isotropic magnetostructural coupling is characterized, and it is observed that the paramagnetic state is critical to understand the experimentally observed negative thermal expansion and to predict the magnetocaloric performance. Moreover, the piezomagnetic and piezospintronic effects induced by biaxial strain are investigated. It is revealed that there is not a strong correlation between the induced magnetization and anomalous Hall conductivities by the imposed strain. Interestingly, the anomalous Hall/Nernst conductivities can be significantly tailored by the applied strain due to the fine-tuning of the Weyl points energies, leading to promising spintronic applications.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Singh, Harish K. ; Samathrakis, Ilias ; Fortunato, Nuno M. ; Zemen, Jan ; Shen, Chen ; Gutfleisch, Oliver ; Zhang, Hongbin
Art des Eintrags: Bibliographie
Titel: Multifunctional antiperovskites driven by strong magnetostructural coupling
Sprache: Englisch
Publikationsjahr: 30 Juni 2021
Ort: London
Verlag: Nature Publishing Group
Titel der Zeitschrift, Zeitung oder Schriftenreihe: npj Computational Materials
Jahrgang/Volume einer Zeitschrift: 7
(Heft-)Nummer: 1
Kollation: 9 Seiten
DOI: 10.1038/s41524-021-00566-w
Zugehörige Links:
Kurzbeschreibung (Abstract):

Based on density functional theory calculations, we elucidated the origin of multifunctional properties for cubic antiperovskites with noncollinear magnetic ground states, which can be attributed to strong isotropic and anisotropic magnetostructural coupling. Of 54 stable magnetic antiperovskites M3XZ (M = Cr, Mn, Fe, Co, and Ni; X = selected elements from Li to Bi except for noble gases and 4f rare-earth metals; and Z = C and N), 14 are found to exhibit the Γ4g/Γ5g (i.e., characterized by irreducible representations) antiferromagnetic magnetic configurations driven by frustrated exchange coupling and strong magnetocrystalline anisotropy. Using the magnetic deformation as an effective proxy, the isotropic magnetostructural coupling is characterized, and it is observed that the paramagnetic state is critical to understand the experimentally observed negative thermal expansion and to predict the magnetocaloric performance. Moreover, the piezomagnetic and piezospintronic effects induced by biaxial strain are investigated. It is revealed that there is not a strong correlation between the induced magnetization and anomalous Hall conductivities by the imposed strain. Interestingly, the anomalous Hall/Nernst conductivities can be significantly tailored by the applied strain due to the fine-tuning of the Weyl points energies, leading to promising spintronic applications.

Freie Schlagworte: Electronic structure, Information storage, Magnetic properties and materials, Solid-state chemistry, Spintronics
ID-Nummer: Artikel-ID: 98
Zusätzliche Informationen:

Deutsche Forschungsgemeinschaft Project 405553726-TRR 270. European Research Council under the EU’s Horizon 2020 research and innovation programme (Grant 743116 project Cool Innov). Jan Zemen was supported by Ministry of Education, Youth and Sports of the Czech Republic OP RDE program under project International Mobility of Researchers MSCA-IF at CTU No. CZ.02.2.69/0.0/0.0/18−070/0010-457.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
Hinterlegungsdatum: 05 Aug 2021 05:13
Letzte Änderung: 04 Okt 2024 08:31
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen