TU Darmstadt / ULB / TUbiblio

Induction of uniaxial anisotropy by controlled phase separation in Y-Co thin films

Sharma, S. ; Ohmer, Dominik ; Zintler, Alexander ; Major, Marton ; Radulov, Iliya ; Kunz, Ulrike ; Komissinskiy, Philipp ; Xu, Bai-Xiang ; Zang, H. ; Molina-Luna, Leopoldo ; Skokov, Konstantin P. ; Alff, Lambert (2020)
Induction of uniaxial anisotropy by controlled phase separation in Y-Co thin films.
In: Physical Review B, 102 (1)
doi: 10.1103/PhysRevB.102.014435
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In this study, molecular beam epitaxy is utilized to stabilize a nanostructured thin-film magnet consisting of a soft magnetic Y2Co17 exchange coupled to hard magnetic YCo5. While, typically, a phase decomposition can be obtained in rare-earth cobalt systems only by the addition of further elements like Cu, Fe, and Zr and complex heat treatments, here we directly induce phase separation by growth kinetics. The resulting nanoscale architecture, as revealed by cross-sectional transmission electron microscopy, is composed of a network of coherently interlinked and aligned Y2Co17 and YCo5 building blocks. The formation of coherent precipitations is facilitated by the perfectly matching lattice constants, atomic species, and crystal symmetry of the two phases with vastly different magnetocrystalline anisotropies. The hard magnetic phase induces an aligned uniaxial anisotropy in Y2Co17, resulting in substantial coercivity associated with enhanced energy products. This work highlights the importance of thin-film epitaxy in understanding magnetic hardening mechanisms and suggests strategies for a rational design of future sustainable magnetic systems.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Sharma, S. ; Ohmer, Dominik ; Zintler, Alexander ; Major, Marton ; Radulov, Iliya ; Kunz, Ulrike ; Komissinskiy, Philipp ; Xu, Bai-Xiang ; Zang, H. ; Molina-Luna, Leopoldo ; Skokov, Konstantin P. ; Alff, Lambert
Art des Eintrags: Bibliographie
Titel: Induction of uniaxial anisotropy by controlled phase separation in Y-Co thin films
Sprache: Englisch
Publikationsjahr: 6 Juli 2020
Verlag: APS Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review B
Jahrgang/Volume einer Zeitschrift: 102
(Heft-)Nummer: 1
DOI: 10.1103/PhysRevB.102.014435
URL / URN: https://doi.org/10.1103/PhysRevB.102.014435
Kurzbeschreibung (Abstract):

In this study, molecular beam epitaxy is utilized to stabilize a nanostructured thin-film magnet consisting of a soft magnetic Y2Co17 exchange coupled to hard magnetic YCo5. While, typically, a phase decomposition can be obtained in rare-earth cobalt systems only by the addition of further elements like Cu, Fe, and Zr and complex heat treatments, here we directly induce phase separation by growth kinetics. The resulting nanoscale architecture, as revealed by cross-sectional transmission electron microscopy, is composed of a network of coherently interlinked and aligned Y2Co17 and YCo5 building blocks. The formation of coherent precipitations is facilitated by the perfectly matching lattice constants, atomic species, and crystal symmetry of the two phases with vastly different magnetocrystalline anisotropies. The hard magnetic phase induces an aligned uniaxial anisotropy in Y2Co17, resulting in substantial coercivity associated with enhanced energy products. This work highlights the importance of thin-film epitaxy in understanding magnetic hardening mechanisms and suggests strategies for a rational design of future sustainable magnetic systems.

Zusätzliche Informationen:

Art.-Nr. 014435

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Dünne Schichten
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physikalische Metallkunde
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 21 Jul 2021 08:25
Letzte Änderung: 26 Jan 2024 09:21
PPN:
Projekte: (DFG, German Research Foundation) Project ID 405553726-TRR 270, DFG Project ID MO 3010/3-1, Deutscher Akademischer Austauschdienst (DAAD), the LOEWE project RESPONSE, (ERC) Horizon 2020 Program under Grant No. 805359-FOXON
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen