TU Darmstadt / ULB / TUbiblio

Experimenting Transition to Sustainable Urban Drainage Systems—Identifying Constraints and Unintended Processes in a Tropical Highly Urbanized Watershed

Chapa, Fernando ; Pérez, María ; Hack, Jochen (2021)
Experimenting Transition to Sustainable Urban Drainage Systems—Identifying Constraints and Unintended Processes in a Tropical Highly Urbanized Watershed.
In: Water, 2020, 12 (12)
doi: 10.26083/tuprints-00018906
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Green Infrastructure promotes the use of natural functions and processes as potential solutions to reduce negative effects derived from anthropocentric interventions such as urbanization. In cities of Latin America, for example, the need for more nature-based infrastructure is evident due to its degree of urbanization and degradation of ecosystems, as well as the alteration of the local water cycle. In this study, an experimental approach for the implementation of a prototype is presented. The prototype consists of a gray-hybrid element for first flush bio-treatment and runoff detention, adapted to the existing stormwater sewer. The experiment took place in a highly urbanized watershed located in the Metropolitan Area of Costa Rica. The characteristics of the existing infrastructure in the study area at different scales were mapped and compared using the Urban Water System Transition Framework. Subsequently, preferences related to spatial locations and technologies were identified from different local decision-makers. Those insights were adopted to identify a potential area for the implementation of the prototype. The experiment consisted of the adaptation of the local sewer to act as a temporal reservoir to reduce the effects derived from rapid generation of stormwater runoff. Unexpected events, not considered initially in the design, are reported in this study as a means to identify the necessary adaptations of the methodology. Our study shows from an experimental learning-experience that the relation between different actors advocating for such technologies influences the implementation and operation of non-conventional technologies. Furthermore, the willingness of residents to modify their urban environments was found to be associated to their own perceptions about security and vandalism occurring in green spaces. The implementation of the prototype showed that both the hydraulic performance is relevant for considering it as a success, as well as the dynamics of the adapted element with the existing urban conditions. In consequence, those aspects should be carefully considered as the design factors of engineering elements when they are related to complex socio-ecological urban systems.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Chapa, Fernando ; Pérez, María ; Hack, Jochen
Art des Eintrags: Zweitveröffentlichung
Titel: Experimenting Transition to Sustainable Urban Drainage Systems—Identifying Constraints and Unintended Processes in a Tropical Highly Urbanized Watershed
Sprache: Englisch
Publikationsjahr: 2021
Publikationsdatum der Erstveröffentlichung: 2020
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Water
Jahrgang/Volume einer Zeitschrift: 12
(Heft-)Nummer: 12
Kollation: 23 Seiten
DOI: 10.26083/tuprints-00018906
URL / URN: https://tuprints.ulb.tu-darmstadt.de/18906
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Green Infrastructure promotes the use of natural functions and processes as potential solutions to reduce negative effects derived from anthropocentric interventions such as urbanization. In cities of Latin America, for example, the need for more nature-based infrastructure is evident due to its degree of urbanization and degradation of ecosystems, as well as the alteration of the local water cycle. In this study, an experimental approach for the implementation of a prototype is presented. The prototype consists of a gray-hybrid element for first flush bio-treatment and runoff detention, adapted to the existing stormwater sewer. The experiment took place in a highly urbanized watershed located in the Metropolitan Area of Costa Rica. The characteristics of the existing infrastructure in the study area at different scales were mapped and compared using the Urban Water System Transition Framework. Subsequently, preferences related to spatial locations and technologies were identified from different local decision-makers. Those insights were adopted to identify a potential area for the implementation of the prototype. The experiment consisted of the adaptation of the local sewer to act as a temporal reservoir to reduce the effects derived from rapid generation of stormwater runoff. Unexpected events, not considered initially in the design, are reported in this study as a means to identify the necessary adaptations of the methodology. Our study shows from an experimental learning-experience that the relation between different actors advocating for such technologies influences the implementation and operation of non-conventional technologies. Furthermore, the willingness of residents to modify their urban environments was found to be associated to their own perceptions about security and vandalism occurring in green spaces. The implementation of the prototype showed that both the hydraulic performance is relevant for considering it as a success, as well as the dynamics of the adapted element with the existing urban conditions. In consequence, those aspects should be carefully considered as the design factors of engineering elements when they are related to complex socio-ecological urban systems.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-189066
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Ingenieurökologie
TU-Projekte: Bund/BMBF|01UU1704|SEE-URBAN-WATER
Hinterlegungsdatum: 16 Jul 2021 12:18
Letzte Änderung: 20 Jul 2021 05:22
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen