Rössler, Maximilian (2021)
Towards a Dimension Formula for Automorphic Forms on O(II_2,10).
Technische Universität Darmstadt
doi: 10.26083/tuprints-00019022
Dissertation, Erstveröffentlichung, Verlagsversion
Kurzbeschreibung (Abstract)
This thesis is concerned with the computation of dimension formulas for special orthogonal modular forms associated with the II_2,10-lattice. For a given arithmetic group, the dimension of the spaces of these orthogonal modular forms is a polynomial of degree 10 in the weight. By using the Hirzebruch-Riemann-Roch theorem and Hirzebruch-Mumford proportionality, this polynomial can be determined up to a geometric error term; this error term is a linear polynomial whose coefficients are given by intersection products of toroidal boundary divisors and certain logarithmic Chern classes. We describe this error term in more detail and determine important components. For this purpose, we construct a special toroidal compactification of the orthogonal moduli variety associated to the II_2,10(N)-lattice and study its geometry. We also describe an essential part of the intersection theory of this compactification, thus reducing the computation of the linear coefficient of the error term to a combinatorial problem. Finally, we give methods to reduce the computation of the constant coefficient of the error term to combinatorial problems; in particular, we can formulate a formulation of the error term without logarithmic Chern classes.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2021 | ||||
Autor(en): | Rössler, Maximilian | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Towards a Dimension Formula for Automorphic Forms on O(II_2,10) | ||||
Sprache: | Englisch | ||||
Referenten: | Scheithauer, Prof. Dr. Nils ; Bruinier, Prof. Dr. Jan Hendrik | ||||
Publikationsjahr: | 2021 | ||||
Ort: | Darmstadt | ||||
Kollation: | 271 Seiten | ||||
Datum der mündlichen Prüfung: | 15 Juni 2021 | ||||
DOI: | 10.26083/tuprints-00019022 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/19022 | ||||
Kurzbeschreibung (Abstract): | This thesis is concerned with the computation of dimension formulas for special orthogonal modular forms associated with the II_2,10-lattice. For a given arithmetic group, the dimension of the spaces of these orthogonal modular forms is a polynomial of degree 10 in the weight. By using the Hirzebruch-Riemann-Roch theorem and Hirzebruch-Mumford proportionality, this polynomial can be determined up to a geometric error term; this error term is a linear polynomial whose coefficients are given by intersection products of toroidal boundary divisors and certain logarithmic Chern classes. We describe this error term in more detail and determine important components. For this purpose, we construct a special toroidal compactification of the orthogonal moduli variety associated to the II_2,10(N)-lattice and study its geometry. We also describe an essential part of the intersection theory of this compactification, thus reducing the computation of the linear coefficient of the error term to a combinatorial problem. Finally, we give methods to reduce the computation of the constant coefficient of the error term to combinatorial problems; in particular, we can formulate a formulation of the error term without logarithmic Chern classes. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Status: | Verlagsversion | ||||
URN: | urn:nbn:de:tuda-tuprints-190223 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik | ||||
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Algebra 04 Fachbereich Mathematik > Algebra > Unendlichdimensionale Lie-Algebren, Vertexalgebren, Automorphe Formen |
||||
Hinterlegungsdatum: | 13 Jul 2021 10:42 | ||||
Letzte Änderung: | 20 Jul 2021 06:59 | ||||
PPN: | |||||
Referenten: | Scheithauer, Prof. Dr. Nils ; Bruinier, Prof. Dr. Jan Hendrik | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 15 Juni 2021 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |