TU Darmstadt / ULB / TUbiblio

Topic-Guided Knowledge Graph Construction for Argument Mining

Li, Weichen ; Abels, Patrick ; Ahmadi, Zahra ; Burkhardt, Sophie ; Schiller, Benjamin ; Gurevych, Iryna ; Kramer, Stefan (2021)
Topic-Guided Knowledge Graph Construction for Argument Mining.
12th IEEE International Conference on Big Knowledge. Auckland, New Zealand (07.12.2021-08.12.2021)
doi: 10.1109/ICKG52313.2021.00049
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Decision-making tasks usually follow five steps: identifying the problem, collecting data, extracting evidence, iden-tifying arguments, and making the decision. This paper focuses on two steps of decision-making: extracting evidence by building knowledge graphs (KGs) of specialized topics and identifying sentences' arguments through sentence-level argument mining. We present a hybrid model that combines topic modeling using latent Dirichlet allocation (LDA) and word embeddings to obtain external knowledge from structured and unstructured data. We use a topic model to extract topic- and sentence-specific evidence from the structured knowledge base Wikidata. A knowledge graph is constructed based on the cosine similarity between the entity word vectors of Wikidata and the vector of the given sentence. A second graph based on topic-specific articles found via Google supplements the general incompleteness of the structured knowledge base. Combining these graphs, we obtain a graph-based model that, as our evaluation shows, successfully capitalizes on both structured and unstructured data.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Li, Weichen ; Abels, Patrick ; Ahmadi, Zahra ; Burkhardt, Sophie ; Schiller, Benjamin ; Gurevych, Iryna ; Kramer, Stefan
Art des Eintrags: Bibliographie
Titel: Topic-Guided Knowledge Graph Construction for Argument Mining
Sprache: Englisch
Publikationsjahr: 9 Dezember 2021
Verlag: IEEE
Buchtitel: Proceedings: 12th IEEE International Conference on Big Knowledge: ICBK 2021
Veranstaltungstitel: 12th IEEE International Conference on Big Knowledge
Veranstaltungsort: Auckland, New Zealand
Veranstaltungsdatum: 07.12.2021-08.12.2021
DOI: 10.1109/ICKG52313.2021.00049
Kurzbeschreibung (Abstract):

Decision-making tasks usually follow five steps: identifying the problem, collecting data, extracting evidence, iden-tifying arguments, and making the decision. This paper focuses on two steps of decision-making: extracting evidence by building knowledge graphs (KGs) of specialized topics and identifying sentences' arguments through sentence-level argument mining. We present a hybrid model that combines topic modeling using latent Dirichlet allocation (LDA) and word embeddings to obtain external knowledge from structured and unstructured data. We use a topic model to extract topic- and sentence-specific evidence from the structured knowledge base Wikidata. A knowledge graph is constructed based on the cosine similarity between the entity word vectors of Wikidata and the vector of the given sentence. A second graph based on topic-specific articles found via Google supplements the general incompleteness of the structured knowledge base. Combining these graphs, we obtain a graph-based model that, as our evaluation shows, successfully capitalizes on both structured and unstructured data.

Freie Schlagworte: UKP_p_OAM
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 16 Jul 2021 11:05
Letzte Änderung: 18 Apr 2024 13:37
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen