TU Darmstadt / ULB / TUbiblio

Thermal stability of the electromechanical properties in acceptor-doped and composite-hardened (Na1/2Bi1/2)TiO3–BaTiO3 ferroelectrics

Slabki, Mihail ; Kodumudi Venkataraman, Lalitha ; Rojac, Tadej ; Rödel, Jürgen ; Koruza, Jurij (2021)
Thermal stability of the electromechanical properties in acceptor-doped and composite-hardened (Na1/2Bi1/2)TiO3–BaTiO3 ferroelectrics.
In: Journal of Applied Physics, 130 (1)
doi: 10.1063/5.0052293
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Lead-free relaxor ferroelectrics are promising candidates for next-generation piezoelectric high-power devices, such as ultrasonic motors, transformers, and therapeutic ultrasonics. These applications require hard ferroelectrics with a broad operating temperature range. Recently, acceptor Zn2+ doping and composite formation with ZnO were proposed to induce hardening in Na1/2Bi1/2TiO3–BaTiO3 and simultaneously increase the depolarization temperature. Here, these two strategies are compared by studying the temperature dependence of electromechanical properties, ferroelectric loops, and nonlinear polarization harmonics. In the modified compositions, epolarization is associated with the shift of the ferroelectric-to-relaxor transition to higher temperatures, while the depolarization onset remains unchanged. This leads to broadening rather than translation of the depolarization region, accompanied by decoupling of the piezoelectric d33 and d31 coefficients. The temperature-dependent electromechanical response is stable for composites, while the Zn2+-doped samples exhibit strong temperature dependence akin to acceptor-doped Pb(Zr,Ti)O3. The thermal evolution of electromechanical coefficients is not related to the thermally induced decrease of the coercive/internal bias fields but instead to the ratio of irreversible-to-reversible nonlinear dynamics arising from displacements of domain walls or similar interfaces. The results demonstrate that mechanical stress-based hardening in the composites exhibits superior thermal stability, which can considerably improve the operational range of lead-free piezoelectric materials.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Slabki, Mihail ; Kodumudi Venkataraman, Lalitha ; Rojac, Tadej ; Rödel, Jürgen ; Koruza, Jurij
Art des Eintrags: Bibliographie
Titel: Thermal stability of the electromechanical properties in acceptor-doped and composite-hardened (Na1/2Bi1/2)TiO3–BaTiO3 ferroelectrics
Sprache: Englisch
Publikationsjahr: 2 Juli 2021
Verlag: American Institute of Physics
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Applied Physics
Jahrgang/Volume einer Zeitschrift: 130
(Heft-)Nummer: 1
DOI: 10.1063/5.0052293
Kurzbeschreibung (Abstract):

Lead-free relaxor ferroelectrics are promising candidates for next-generation piezoelectric high-power devices, such as ultrasonic motors, transformers, and therapeutic ultrasonics. These applications require hard ferroelectrics with a broad operating temperature range. Recently, acceptor Zn2+ doping and composite formation with ZnO were proposed to induce hardening in Na1/2Bi1/2TiO3–BaTiO3 and simultaneously increase the depolarization temperature. Here, these two strategies are compared by studying the temperature dependence of electromechanical properties, ferroelectric loops, and nonlinear polarization harmonics. In the modified compositions, epolarization is associated with the shift of the ferroelectric-to-relaxor transition to higher temperatures, while the depolarization onset remains unchanged. This leads to broadening rather than translation of the depolarization region, accompanied by decoupling of the piezoelectric d33 and d31 coefficients. The temperature-dependent electromechanical response is stable for composites, while the Zn2+-doped samples exhibit strong temperature dependence akin to acceptor-doped Pb(Zr,Ti)O3. The thermal evolution of electromechanical coefficients is not related to the thermally induced decrease of the coercive/internal bias fields but instead to the ratio of irreversible-to-reversible nonlinear dynamics arising from displacements of domain walls or similar interfaces. The results demonstrate that mechanical stress-based hardening in the composites exhibits superior thermal stability, which can considerably improve the operational range of lead-free piezoelectric materials.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Hinterlegungsdatum: 06 Jul 2021 05:39
Letzte Änderung: 06 Jul 2021 05:39
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen