Ardah, Khaled ; Haardt, Martin ; Liu, Tianyi ; Matter, Frederic ; Pesavento, Marius ; Pfetsch, Marc E. (2021)
Recovery under Side Constraints.
doi: 10.48550/arXiv.2106.09375
Report, Bibliographie
Kurzbeschreibung (Abstract)
This paper addresses sparse signal reconstruction under various types of structural side constraints with applications in multi-antenna systems. Side constraints may result from prior information on the measurement system and the sparse signal structure. They may involve the structure of the sensing matrix, the structure of the non-zero support values, the temporal structure of the sparse representationvector, and the nonlinear measurement structure. First, we demonstrate how a priori information in form of structural side constraints influence recovery guarantees (null space properties) using L1-minimization. Furthermore, for constant modulus signals, signals with row-, block- and rank-sparsity, as well as non-circular signals, we illustrate how structural prior information can be used to devise efficient algorithms with improved recovery performance and reduced computational complexity. Finally, we address the measurement system design for linear and nonlinear measurements of sparse signals. Moreover, we discuss the linear mixing matrix design based on coherence minimization. Then we extend our focus to nonlinear measurement systems where we design parallel optimization algorithms to efficiently compute stationary points in the sparse phase retrieval problem with and without dictionary learning.
Typ des Eintrags: | Report |
---|---|
Erschienen: | 2021 |
Autor(en): | Ardah, Khaled ; Haardt, Martin ; Liu, Tianyi ; Matter, Frederic ; Pesavento, Marius ; Pfetsch, Marc E. |
Art des Eintrags: | Bibliographie |
Titel: | Recovery under Side Constraints |
Sprache: | Englisch |
Publikationsjahr: | 30 Juni 2021 |
Verlag: | arXiv |
Reihe: | Computer Science |
Kollation: | 30 Seiten |
DOI: | 10.48550/arXiv.2106.09375 |
URL / URN: | https://arxiv.org/abs/2106.09375 |
Kurzbeschreibung (Abstract): | This paper addresses sparse signal reconstruction under various types of structural side constraints with applications in multi-antenna systems. Side constraints may result from prior information on the measurement system and the sparse signal structure. They may involve the structure of the sensing matrix, the structure of the non-zero support values, the temporal structure of the sparse representationvector, and the nonlinear measurement structure. First, we demonstrate how a priori information in form of structural side constraints influence recovery guarantees (null space properties) using L1-minimization. Furthermore, for constant modulus signals, signals with row-, block- and rank-sparsity, as well as non-circular signals, we illustrate how structural prior information can be used to devise efficient algorithms with improved recovery performance and reduced computational complexity. Finally, we address the measurement system design for linear and nonlinear measurements of sparse signals. Moreover, we discuss the linear mixing matrix design based on coherence minimization. Then we extend our focus to nonlinear measurement systems where we design parallel optimization algorithms to efficiently compute stationary points in the sparse phase retrieval problem with and without dictionary learning. |
Zusätzliche Informationen: | 1.Version |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Nachrichtentechnische Systeme |
Hinterlegungsdatum: | 01 Jul 2021 09:38 |
Letzte Änderung: | 19 Dez 2024 10:26 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |