TU Darmstadt / ULB / TUbiblio

Understanding the capacitance of thin composite films based on conducting polymer and carbon nanostructures in aqueous electrolytes

Cymann-Sachajdak, Anita ; Graczyk-Zajac, Magdalena ; Trykowski, Grzegorz ; Wilamowska-Zawłocka, Monika (2021)
Understanding the capacitance of thin composite films based on conducting polymer and carbon nanostructures in aqueous electrolytes.
In: Electrochimica Acta, 383
doi: 10.1016/j.electacta.2021.138356
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In this work electrochemical performance of thin composite films consisted of poly(3,4-ethylenedioxythiophene) (PEDOT), graphene oxide (G0x) and oxidized multiwalled carbon nanotubes (oxMWCNTs) is investigated in various sulphates (Li2SO4, Na2SO4, K2SO4, MgSO4) and acidic (H2SO4) electrolytes. Capacitance values, rate capability and cycling stability achieved for the composite layers are correlated with the electrolytes' properties such as the conductivity, viscosity, cation size and pH. The highest capacitance values are achieved in acidic solution (98.6 mF cm(-2) at 1 mA cm(-2)), whereas cycling stability is better in neutral electrolytes (88.4% of initial capacitance value after 10'000 cycles recorded for symmetric supercapacitor in 0.5 M MgSO4 solution). Diffusion controlled and non-diffusion controlled capacitance contributions are calculated and the results are discussed considering various ranges of sweep rates taken into account in the linear fitting and extrapolation of parameters.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Cymann-Sachajdak, Anita ; Graczyk-Zajac, Magdalena ; Trykowski, Grzegorz ; Wilamowska-Zawłocka, Monika
Art des Eintrags: Bibliographie
Titel: Understanding the capacitance of thin composite films based on conducting polymer and carbon nanostructures in aqueous electrolytes
Sprache: Englisch
Publikationsjahr: 9 April 2021
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Electrochimica Acta
Jahrgang/Volume einer Zeitschrift: 383
DOI: 10.1016/j.electacta.2021.138356
URL / URN: https://www.sciencedirect.com/science/article/pii/S001346862...
Kurzbeschreibung (Abstract):

In this work electrochemical performance of thin composite films consisted of poly(3,4-ethylenedioxythiophene) (PEDOT), graphene oxide (G0x) and oxidized multiwalled carbon nanotubes (oxMWCNTs) is investigated in various sulphates (Li2SO4, Na2SO4, K2SO4, MgSO4) and acidic (H2SO4) electrolytes. Capacitance values, rate capability and cycling stability achieved for the composite layers are correlated with the electrolytes' properties such as the conductivity, viscosity, cation size and pH. The highest capacitance values are achieved in acidic solution (98.6 mF cm(-2) at 1 mA cm(-2)), whereas cycling stability is better in neutral electrolytes (88.4% of initial capacitance value after 10'000 cycles recorded for symmetric supercapacitor in 0.5 M MgSO4 solution). Diffusion controlled and non-diffusion controlled capacitance contributions are calculated and the results are discussed considering various ranges of sweep rates taken into account in the linear fitting and extrapolation of parameters.

Freie Schlagworte: Composite electrode materials, Conducting polymer, Graphene oxide, Carbon nanotubes, Electrolytes, Electrochemical capacitors, Pseudocapacitive Contributions, Electrochemical Performance, Energy-Storage, TIO2 Anatase, Ionic-Radii, Hydration, Supercapacitors, Nanotubes, Transport, Poly(3,4-Ethylenedioxythiophene)
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
Hinterlegungsdatum: 11 Jun 2021 06:11
Letzte Änderung: 11 Jun 2021 06:11
PPN:
Projekte: Foundation for Polish Science, European Commission, Grant Number POIR.04.04.00-00-4582/17-00
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen