Alber, Gernot ; Charnes, Christopher (2019)
Mutually Unbiased Bases and Their Symmetries.
In: Quantum Reports, 1 (2)
doi: 10.3390/quantum1020020
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
We present and generalize the basic ideas underlying recent work aimed at the construction of mutually unbiased bases in finite dimensional Hilbert spaces with the help of group and graph theoretical concepts. In this approach finite groups are used to construct maximal sets of mutually unbiased bases. Thus the prime number restrictions of previous approaches are circumvented and this construction principle sheds new light onto the intricate relation between mutually unbiased bases and characteristic geometrical structures of Hilbert spaces.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2019 |
Autor(en): | Alber, Gernot ; Charnes, Christopher |
Art des Eintrags: | Bibliographie |
Titel: | Mutually Unbiased Bases and Their Symmetries |
Sprache: | Englisch |
Publikationsjahr: | 8 November 2019 |
Verlag: | MDPI |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Quantum Reports |
Jahrgang/Volume einer Zeitschrift: | 1 |
(Heft-)Nummer: | 2 |
DOI: | 10.3390/quantum1020020 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | We present and generalize the basic ideas underlying recent work aimed at the construction of mutually unbiased bases in finite dimensional Hilbert spaces with the help of group and graph theoretical concepts. In this approach finite groups are used to construct maximal sets of mutually unbiased bases. Thus the prime number restrictions of previous approaches are circumvented and this construction principle sheds new light onto the intricate relation between mutually unbiased bases and characteristic geometrical structures of Hilbert spaces. |
Freie Schlagworte: | mutually unbiased bases, group representations, graphs, quantum information |
Zusätzliche Informationen: | This article belongs to the Special Issue Selected Papers from the 16th International Conference on Squeezed States and Uncertainty Relations (ICSSUR 2019); Erstveröffentlichung |
Fachbereich(e)/-gebiet(e): | 05 Fachbereich Physik 05 Fachbereich Physik > Institut für Angewandte Physik 05 Fachbereich Physik > Institut für Angewandte Physik > Theoretische Quantenphysik |
Hinterlegungsdatum: | 10 Jun 2021 07:48 |
Letzte Änderung: | 05 Mär 2024 11:23 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Mutually Unbiased Bases and Their Symmetries. (deposited 12 Jan 2024 13:45)
- Mutually Unbiased Bases and Their Symmetries. (deposited 10 Jun 2021 07:48) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |