Meister, Matthias ; Arnold, Stefan ; Moll, Daniela ; Eckart, Michael ; Kajari, Endre ; Efremov, Maxim A. ; Walser, Reinhold ; Schleich, Wolfgang P. (2017)
Efficient description of Bose-Einstein condensates in time-dependent traps.
doi: 10.48550/arXiv.1701.06789
Report, Bibliographie
Kurzbeschreibung (Abstract)
Quantum sensors based on matter-wave interferometry are promising candidates for high-precision gravimetry and inertial sensing in space. The favorable source for the coherent matter waves in these devices are Bose-Einstein condensates. A reliable prediction of their dynamics, which is governed by the Gross-Pitaevskii equation, requires suitable analytical and numerical methods which take into account the center-of-mass motion of the condensate, its rotation and its spatial expansion by many orders of magnitude. In this chapter, we present an efficient way to study their dynamics in time-dependent rotating traps that meet this objective. Both, an approximate analytical solution for condensates in the Thomas-Fermi regime and dedicated numerical simulations on a variable adapted grid are discussed. We contrast and relate our approach to previous alternative methods and provide further results, such as analytical expressions for the one- and two-dimensional spatial density distributions and the momentum distribution in the long-time limit that are of immediate interest to experimentalists working in this field of research.
Typ des Eintrags: | Report |
---|---|
Erschienen: | 2017 |
Autor(en): | Meister, Matthias ; Arnold, Stefan ; Moll, Daniela ; Eckart, Michael ; Kajari, Endre ; Efremov, Maxim A. ; Walser, Reinhold ; Schleich, Wolfgang P. |
Art des Eintrags: | Bibliographie |
Titel: | Efficient description of Bose-Einstein condensates in time-dependent traps |
Sprache: | Englisch |
Publikationsjahr: | 7 Juli 2017 |
Verlag: | arXiV |
Reihe: | Quantum Physics |
Auflage: | 3. Version |
DOI: | 10.48550/arXiv.1701.06789 |
URL / URN: | https://arxiv.org/abs/1701.06789v3 |
Kurzbeschreibung (Abstract): | Quantum sensors based on matter-wave interferometry are promising candidates for high-precision gravimetry and inertial sensing in space. The favorable source for the coherent matter waves in these devices are Bose-Einstein condensates. A reliable prediction of their dynamics, which is governed by the Gross-Pitaevskii equation, requires suitable analytical and numerical methods which take into account the center-of-mass motion of the condensate, its rotation and its spatial expansion by many orders of magnitude. In this chapter, we present an efficient way to study their dynamics in time-dependent rotating traps that meet this objective. Both, an approximate analytical solution for condensates in the Thomas-Fermi regime and dedicated numerical simulations on a variable adapted grid are discussed. We contrast and relate our approach to previous alternative methods and provide further results, such as analytical expressions for the one- and two-dimensional spatial density distributions and the momentum distribution in the long-time limit that are of immediate interest to experimentalists working in this field of research. |
Zusätzliche Informationen: | Preprint |
Fachbereich(e)/-gebiet(e): | 05 Fachbereich Physik 05 Fachbereich Physik > Institut für Angewandte Physik 05 Fachbereich Physik > Institut für Angewandte Physik > Theorie kalter Quantengase, Quantenoptik, Technische Optik 05 Fachbereich Physik > Institut für Angewandte Physik > Theoretische Quantendynamik 05 Fachbereich Physik > Institut für Angewandte Physik > Theoretische Quantenphysik |
Hinterlegungsdatum: | 09 Jun 2021 06:56 |
Letzte Änderung: | 11 Jul 2024 10:08 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |