Slabki, Mihail ; Kodumudi Venkataraman, Lalitha ; Checchia, Stefano ; Fulanovic, Lovro ; Daniels, John E. ; Koruza, Jurij (2021)
Direct observation of domain wall motion and lattice strain dynamics in ferroelectric under high-power resonance.
In: Physics Letters B, 103 (17)
doi: 10.1103/PhysRevB.103.174113
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Domain wall motion and lattice strain dynamics of ferroelectrics at resonance were simultaneously measured by combining high-power burst excitation and in situ high-energy x-ray diffraction. The increased loss at high vibration velocity was directly related to the increased domain wall motion, driven by dynamic mechanical stress. A general relationship between the microstructural strain contributions and macroscopic electromechanical behavior was established, allowing the prediction of high-power stability of ferroelectric materials. The results indicate that the materials’ stability during high-power drive is predominantly related to the basic chemical composition, while the piezoelectric hardening mechanisms mainly influence the small-signal behavior.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2021 |
Autor(en): | Slabki, Mihail ; Kodumudi Venkataraman, Lalitha ; Checchia, Stefano ; Fulanovic, Lovro ; Daniels, John E. ; Koruza, Jurij |
Art des Eintrags: | Bibliographie |
Titel: | Direct observation of domain wall motion and lattice strain dynamics in ferroelectric under high-power resonance |
Sprache: | Englisch |
Publikationsjahr: | 26 Mai 2021 |
Verlag: | American Physical Society |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Physics Letters B |
Jahrgang/Volume einer Zeitschrift: | 103 |
(Heft-)Nummer: | 17 |
DOI: | 10.1103/PhysRevB.103.174113 |
URL / URN: | https://link.aps.org/doi/10.1103/PhysRevB.103.174113 |
Kurzbeschreibung (Abstract): | Domain wall motion and lattice strain dynamics of ferroelectrics at resonance were simultaneously measured by combining high-power burst excitation and in situ high-energy x-ray diffraction. The increased loss at high vibration velocity was directly related to the increased domain wall motion, driven by dynamic mechanical stress. A general relationship between the microstructural strain contributions and macroscopic electromechanical behavior was established, allowing the prediction of high-power stability of ferroelectric materials. The results indicate that the materials’ stability during high-power drive is predominantly related to the basic chemical composition, while the piezoelectric hardening mechanisms mainly influence the small-signal behavior. |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe |
Hinterlegungsdatum: | 28 Mai 2021 05:40 |
Letzte Änderung: | 28 Mai 2021 05:40 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |