TU Darmstadt / ULB / TUbiblio

Direct observation of domain wall motion and lattice strain dynamics in ferroelectric under high-power resonance

Slabki, Mihail ; Kodumudi Venkataraman, Lalitha ; Checchia, Stefano ; Fulanovic, Lovro ; Daniels, John E. ; Koruza, Jurij (2021)
Direct observation of domain wall motion and lattice strain dynamics in ferroelectric under high-power resonance.
In: Physics Letters B, 103 (17)
doi: 10.1103/PhysRevB.103.174113
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Domain wall motion and lattice strain dynamics of ferroelectrics at resonance were simultaneously measured by combining high-power burst excitation and in situ high-energy x-ray diffraction. The increased loss at high vibration velocity was directly related to the increased domain wall motion, driven by dynamic mechanical stress. A general relationship between the microstructural strain contributions and macroscopic electromechanical behavior was established, allowing the prediction of high-power stability of ferroelectric materials. The results indicate that the materials’ stability during high-power drive is predominantly related to the basic chemical composition, while the piezoelectric hardening mechanisms mainly influence the small-signal behavior.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Slabki, Mihail ; Kodumudi Venkataraman, Lalitha ; Checchia, Stefano ; Fulanovic, Lovro ; Daniels, John E. ; Koruza, Jurij
Art des Eintrags: Bibliographie
Titel: Direct observation of domain wall motion and lattice strain dynamics in ferroelectric under high-power resonance
Sprache: Englisch
Publikationsjahr: 26 Mai 2021
Verlag: American Physical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physics Letters B
Jahrgang/Volume einer Zeitschrift: 103
(Heft-)Nummer: 17
DOI: 10.1103/PhysRevB.103.174113
URL / URN: https://link.aps.org/doi/10.1103/PhysRevB.103.174113
Kurzbeschreibung (Abstract):

Domain wall motion and lattice strain dynamics of ferroelectrics at resonance were simultaneously measured by combining high-power burst excitation and in situ high-energy x-ray diffraction. The increased loss at high vibration velocity was directly related to the increased domain wall motion, driven by dynamic mechanical stress. A general relationship between the microstructural strain contributions and macroscopic electromechanical behavior was established, allowing the prediction of high-power stability of ferroelectric materials. The results indicate that the materials’ stability during high-power drive is predominantly related to the basic chemical composition, while the piezoelectric hardening mechanisms mainly influence the small-signal behavior.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Hinterlegungsdatum: 28 Mai 2021 05:40
Letzte Änderung: 28 Mai 2021 05:40
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen