TU Darmstadt / ULB / TUbiblio

Asymptotically Optimal Procedures for Sequential Joint Detection and Estimation

Reinhard, Dominik ; Fauß, Michael ; Zoubir, Abdelhak M. (2024)
Asymptotically Optimal Procedures for Sequential Joint Detection and Estimation.
In: Signal Processing, 219
doi: 10.1016/j.sigpro.2024.109410
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We investigate the problem of jointly testing multiple hypotheses and estimating a random parameter of the underlying distribution in a sequential setup. The aim is to jointly infer the true hypothesis and the true parameter while using on average as few samples as possible and keeping the detection and estimation errors below predefined levels. Based on mild assumptions on the underlying model, we propose an asymptotically optimal procedure, i.e., a procedure that becomes optimal when the tolerated detection and estimation error levels tend to zero. The implementation of the resulting asymptotically optimal stopping rule is computationally cheap and, hence, applicable for high-dimensional data. We further propose a projected quasi-Newton method to optimally choose the coefficients that parameterize the instantaneous cost function such that the constraints are fulfilled with equality. The proposed theory is validated by numerical examples.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Reinhard, Dominik ; Fauß, Michael ; Zoubir, Abdelhak M.
Art des Eintrags: Bibliographie
Titel: Asymptotically Optimal Procedures for Sequential Joint Detection and Estimation
Sprache: Englisch
Publikationsjahr: 1 Juni 2024
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Signal Processing
Jahrgang/Volume einer Zeitschrift: 219
DOI: 10.1016/j.sigpro.2024.109410
Zugehörige Links:
Kurzbeschreibung (Abstract):

We investigate the problem of jointly testing multiple hypotheses and estimating a random parameter of the underlying distribution in a sequential setup. The aim is to jointly infer the true hypothesis and the true parameter while using on average as few samples as possible and keeping the detection and estimation errors below predefined levels. Based on mild assumptions on the underlying model, we propose an asymptotically optimal procedure, i.e., a procedure that becomes optimal when the tolerated detection and estimation error levels tend to zero. The implementation of the resulting asymptotically optimal stopping rule is computationally cheap and, hence, applicable for high-dimensional data. We further propose a projected quasi-Newton method to optimally choose the coefficients that parameterize the instantaneous cost function such that the constraints are fulfilled with equality. The proposed theory is validated by numerical examples.

Zusätzliche Informationen:

Art.No.:109410

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung
Hinterlegungsdatum: 14 Mai 2021 06:07
Letzte Änderung: 23 Feb 2024 07:55
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen