TU Darmstadt / ULB / TUbiblio

Robust Spectral Clustering: A Locality Preserving Feature Mapping Based on M-estimation

Taştan, A. ; Muma, M. ; Zoubir, A. M. (2021)
Robust Spectral Clustering: A Locality Preserving Feature Mapping Based on M-estimation.
29th European Signal Processing Conference (EUSIPCO). virtual Conference (23.08.2021-27.08.2021)
doi: 10.23919/EUSIPCO54536.2021.9616292
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Dimension reduction is a fundamental task in spectral clustering. In practical applications, the data may be corrupted by outliers and noise, which can obscure the underlying data structure. The effect is that the embeddings no longer represent the true cluster structure. We therefore propose a new robust spectral clustering algorithm that maps each high-dimensional feature vector onto a low-dimensional vector space. Robustness is achieved by posing the locality preserving feature mapping problem in form of a ridge regression task that is solved with a penalized M-estimation approach. An unsupervised penalty parameter selection strategy is proposed using the Fiedler vector, which is the eigenvector associated with the second smallest eigenvalue of a connected graph. More precisely, the penalty parameter is selected, such that, the corresponding Fiedler vector is Δ-separated with a minimum information loss on the embeddings. The method is benchmarked against popular embedding and spectral clustering approaches using real-world datasets that are corrupted by outliers.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Taştan, A. ; Muma, M. ; Zoubir, A. M.
Art des Eintrags: Bibliographie
Titel: Robust Spectral Clustering: A Locality Preserving Feature Mapping Based on M-estimation
Sprache: Englisch
Publikationsjahr: 8 Dezember 2021
Verlag: IEEE
Buchtitel: 29th European Signal Processing Conference (EUSIPCO 2021): Proceedings
Veranstaltungstitel: 29th European Signal Processing Conference (EUSIPCO)
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 23.08.2021-27.08.2021
DOI: 10.23919/EUSIPCO54536.2021.9616292
Kurzbeschreibung (Abstract):

Dimension reduction is a fundamental task in spectral clustering. In practical applications, the data may be corrupted by outliers and noise, which can obscure the underlying data structure. The effect is that the embeddings no longer represent the true cluster structure. We therefore propose a new robust spectral clustering algorithm that maps each high-dimensional feature vector onto a low-dimensional vector space. Robustness is achieved by posing the locality preserving feature mapping problem in form of a ridge regression task that is solved with a penalized M-estimation approach. An unsupervised penalty parameter selection strategy is proposed using the Fiedler vector, which is the eigenvector associated with the second smallest eigenvalue of a connected graph. More precisely, the penalty parameter is selected, such that, the corresponding Fiedler vector is Δ-separated with a minimum information loss on the embeddings. The method is benchmarked against popular embedding and spectral clustering approaches using real-world datasets that are corrupted by outliers.

Freie Schlagworte: emergenCITY_CPS
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Robust Data Science
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
TU-Projekte: HMWK|III L6-519/03/05.001-(0016)|emergenCity TP Bock
Hinterlegungsdatum: 15 Sep 2021 13:34
Letzte Änderung: 02 Feb 2023 09:43
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen