TU Darmstadt / ULB / TUbiblio

Face Presentation Attack Detection in Ultraviolet Spectrum via Local and Global Features

Siegmund, Dirk ; Kerckhoff, Florian ; Yeste Magdaleno, Javier ; Jansen, Nils ; Kirchbuchner, Florian ; Kuijper, Arjan (2020)
Face Presentation Attack Detection in Ultraviolet Spectrum via Local and Global Features.
19th International Conference of the Biometrics Special Interest Group. virtual Conference (16.09.2020-18.09.2020)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The security of the commonly used face recognition algorithms is often doubted, as they appear vulnerable to so-called presentation attacks. While there are a number of detection methods that are using different light spectra to detect these attacks this is the first work to explore skin properties using the ultraviolet spectrum. Our multi-sensor approach consists of learning features that appear in the comparison of two images, one in the visible and one in the ultraviolet spectrum. We use brightness and keypoints as features for training, experimenting with different learning strategies. We present the results of our evaluation on our novel Face UV PAD database. The results of our method are evaluated in an leave-one-out comparison, where we achieved an APCER/BPCER of 0%/0.2%. The results obtained indicate that UV images in presentation attack detection include useful information that are not easy to overcome.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Siegmund, Dirk ; Kerckhoff, Florian ; Yeste Magdaleno, Javier ; Jansen, Nils ; Kirchbuchner, Florian ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: Face Presentation Attack Detection in Ultraviolet Spectrum via Local and Global Features
Sprache: Englisch
Publikationsjahr: 2020
Verlag: Gesellschaft für Informatik
Buchtitel: BIOSIG 2020 - Proceedings of the 19th International Conference of the Biometrics Special Interest Group
Veranstaltungstitel: 19th International Conference of the Biometrics Special Interest Group
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 16.09.2020-18.09.2020
URL / URN: https://dl.gi.de/handle/20.500.12116/34329
Zugehörige Links:
Kurzbeschreibung (Abstract):

The security of the commonly used face recognition algorithms is often doubted, as they appear vulnerable to so-called presentation attacks. While there are a number of detection methods that are using different light spectra to detect these attacks this is the first work to explore skin properties using the ultraviolet spectrum. Our multi-sensor approach consists of learning features that appear in the comparison of two images, one in the visible and one in the ultraviolet spectrum. We use brightness and keypoints as features for training, experimenting with different learning strategies. We present the results of our evaluation on our novel Face UV PAD database. The results of our method are evaluated in an leave-one-out comparison, where we achieved an APCER/BPCER of 0%/0.2%. The results obtained indicate that UV images in presentation attack detection include useful information that are not easy to overcome.

Freie Schlagworte: Biometric identification systems, Spoofing attacks, Biometrics, Security technologies
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 09 Apr 2021 10:03
Letzte Änderung: 09 Apr 2021 10:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen