Maitra, M. ; Mukherjee, A. (2014)
Convergence of the Min-Sum Decoding Scheme for LDPC Codes from a Dynamical Systems Perspective.
4th International Conference of Emerging Applications of Information Technology. Kolkata, India (19.12.2014-21.12.2014)
doi: 10.1109/EAIT.2014.40
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
LDPC codes represent a class of codes for a wide variety of modern day coding applications including wireless communications and also some aspects of Cryptography. The general decoder for these codes, the Sum-Product algorithm can be viewed as a nonlinear dynamical system and has been shown to exhibit bifurcations and chaotic phenomena in the low and waterfall SNR zone in an AWGN channel. It has been attempted to investigate whether the Min-Sum decoder, a major approximation of the Sum-Product decoder, exhibits similar phenomena in its corresponding waterfall SNR zone for a particular Gallager code in the AWGN Channel. The results obtained indicate that the decoder does not show bifurcations and chaos in the waterfall SNR zone. Nevertheless, the decoder converges smoothly when the SNR stays above the waterfall region. This work guides how to find the convergent SNR zone for decoding any particular LDPC code with the Min-Sum decoder.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2014 |
Autor(en): | Maitra, M. ; Mukherjee, A. |
Art des Eintrags: | Bibliographie |
Titel: | Convergence of the Min-Sum Decoding Scheme for LDPC Codes from a Dynamical Systems Perspective |
Sprache: | Englisch |
Publikationsjahr: | Dezember 2014 |
Verlag: | IEEE |
Buchtitel: | Proceedings : Fourth International Conference on Emerging Applications of Information Technology |
Veranstaltungstitel: | 4th International Conference of Emerging Applications of Information Technology |
Veranstaltungsort: | Kolkata, India |
Veranstaltungsdatum: | 19.12.2014-21.12.2014 |
DOI: | 10.1109/EAIT.2014.40 |
Kurzbeschreibung (Abstract): | LDPC codes represent a class of codes for a wide variety of modern day coding applications including wireless communications and also some aspects of Cryptography. The general decoder for these codes, the Sum-Product algorithm can be viewed as a nonlinear dynamical system and has been shown to exhibit bifurcations and chaotic phenomena in the low and waterfall SNR zone in an AWGN channel. It has been attempted to investigate whether the Min-Sum decoder, a major approximation of the Sum-Product decoder, exhibits similar phenomena in its corresponding waterfall SNR zone for a particular Gallager code in the AWGN Channel. The results obtained indicate that the decoder does not show bifurcations and chaos in the waterfall SNR zone. Nevertheless, the decoder converges smoothly when the SNR stays above the waterfall region. This work guides how to find the convergent SNR zone for decoding any particular LDPC code with the Min-Sum decoder. |
Freie Schlagworte: | AWGN channels, bifurcation, channel coding, chaotic communication, convergence, cryptography, iterative decoding, mobile radio, nonlinear codes, parity check codes, wireless channels, LDPC code, min-sum iterative decoding scheme convergence, wireless mobile communication cryptography, sum-product decoder algorithm, nonlinear dynamical system, bifurcation phenomena, chaotic phenomena, AWGN channel, waterfall SNR zone, low SNR zone, low density parity check code, Gallager code, additive white Gaussian noise channel, Signal to noise ratio, Decoding, Iterative decoding, Bifurcation, Approximation methods, Vectors, Gallager codes, Iterative Deocding, Nonlinear Dynamics, Decoder Dynamics, Gaussian Channel |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Angewandte Kryptographie |
Hinterlegungsdatum: | 22 Mär 2021 09:48 |
Letzte Änderung: | 22 Mär 2021 09:48 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |