TU Darmstadt / ULB / TUbiblio

Donor and acceptor-like self-doping by mechanically induced dislocations in bulk TiO2

Muhammad, Qaisar Khushi ; Porz, Lukas ; Nakamura, Atsutomo ; Matsunaga, Katsuyuki ; Rohnke, Marcus ; Janek, Jürgen ; Rödel, Jürgen ; Frömling, Till (2021)
Donor and acceptor-like self-doping by mechanically induced dislocations in bulk TiO2.
In: Nano Energy, 85
doi: 10.1016/j.nanoen.2021.105944
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Dislocations have been recently introduced as a novel tool to tailor the conductivity of functional ceramics. However, tuning strategies suffer from poor insight into the structural complexity of dislocations and their networks. Here, we demonstrate that dislocations can be used to both enhance and reduce the overall conductivity in the same ceramic material. Accurate control of the arrangement of dislocations within the dislocation network enables tailoring TiO2 bulk samples to behave like being chemically modified either with an acceptor or donor dopant. Our approach combines ultra-high voltage electron microscopy, oxygen partial pressure, and temperature dependent electrical conductivity measurements combined with time-of-flight secondary ion mass spectrometry. This allows us to focus on mechanically tailored interaction of next neighbor dislocations and to differentiate between percolating conductive pathways and separated charge carrier zones. This seemingly simple approach purposefully tailors the conductivity of TiO2, opening new avenues to engineer functional ceramics beyond common chemical doping strategies.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Muhammad, Qaisar Khushi ; Porz, Lukas ; Nakamura, Atsutomo ; Matsunaga, Katsuyuki ; Rohnke, Marcus ; Janek, Jürgen ; Rödel, Jürgen ; Frömling, Till
Art des Eintrags: Bibliographie
Titel: Donor and acceptor-like self-doping by mechanically induced dislocations in bulk TiO2
Sprache: Englisch
Publikationsjahr: 15 Juli 2021
Verlag: Elsevier Science Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nano Energy
Jahrgang/Volume einer Zeitschrift: 85
DOI: 10.1016/j.nanoen.2021.105944
Kurzbeschreibung (Abstract):

Dislocations have been recently introduced as a novel tool to tailor the conductivity of functional ceramics. However, tuning strategies suffer from poor insight into the structural complexity of dislocations and their networks. Here, we demonstrate that dislocations can be used to both enhance and reduce the overall conductivity in the same ceramic material. Accurate control of the arrangement of dislocations within the dislocation network enables tailoring TiO2 bulk samples to behave like being chemically modified either with an acceptor or donor dopant. Our approach combines ultra-high voltage electron microscopy, oxygen partial pressure, and temperature dependent electrical conductivity measurements combined with time-of-flight secondary ion mass spectrometry. This allows us to focus on mechanically tailored interaction of next neighbor dislocations and to differentiate between percolating conductive pathways and separated charge carrier zones. This seemingly simple approach purposefully tailors the conductivity of TiO2, opening new avenues to engineer functional ceramics beyond common chemical doping strategies.

Freie Schlagworte: Self-doping, Dislocations, Mesoscopic dislocation structure, Dislocation tuned functionality, High temperature deformation, Defect chemistry
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Hinterlegungsdatum: 16 Mär 2021 06:28
Letzte Änderung: 16 Mär 2021 06:28
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen