Smuda, Martin (2021)
Direct Numerical Simulation of Multi-Phase Flows using Extended Discontinuous Galerkin Methods.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00017376
Dissertation, Erstveröffentlichung, Verlagsversion
Kurzbeschreibung (Abstract)
The scientific study of multi-phase flows is a challenging task for analytical and experimental works. Thus, sophisticated and specialized numerical methods are in need for the direct numerical simulation of such problems.
In this work a high-order multi-phase flow solver on the basis of the extended Discontinuous Galerkin (extended DG/XDG) method is developed. This allows the direct numerical simulation of the transient incompressible two-phase Navier-Stokes equations in their sharp interface formulation. The approximation space of the local ansatz-functions is adapted to be conform to the position of the interface. The interface, described as a level-set function, is discretized by a standard DG method that enables a sub-cell accurate representation of sharp jumps in the pressure field and kinks in the velocity field. For the numerical treatment of the surface tension force the Laplace-Beltrami formulation without regularization is implemented. Stability issues regarding the energy conservation of the solver are addressed. The developed solver is validated against a wide range of typical two-phase surface tension driven flow phenomena including capillary waves, an oscillating droplet and a rising bubble.
Allowing the simulation of dynamic contact line problems, the generalized Navier boundary condition is adapted for the XDG discretization. The results regarding the rise of liquid in a capillary build the basis of a new benchmark setup for capillarity driven flow problems.
Another extension of the solver is the implementation of the coupled two-phase heat equation in context of the XDG method. Furthermore, the discretization for both the Navier-Stokes equations and the heat equation is extended to allow a mass and energy flow across the interface. This way the velocity field exhibits a sharp jump and the temperature field shows a kink at the interface. A first basic validation is provided against analytical solutions.
This work presents a multi-purpose flow solver for the direct simulation of multi-phase flows involving dynamic contact lines and phase changes due to evaporation. It is based on the XDG method to allow a sub-cell accurate approximation in context of the sharp interface formulation.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2021 | ||||
Autor(en): | Smuda, Martin | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Direct Numerical Simulation of Multi-Phase Flows using Extended Discontinuous Galerkin Methods | ||||
Sprache: | Englisch | ||||
Referenten: | Oberlack, Prof. Dr. Martin ; Bothe, Prof. Dr. Dieter | ||||
Publikationsjahr: | 2021 | ||||
Ort: | Darmstadt | ||||
Kollation: | xxv, 125 Seiten | ||||
Datum der mündlichen Prüfung: | 20 Oktober 2020 | ||||
DOI: | 10.26083/tuprints-00017376 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/17376 | ||||
Kurzbeschreibung (Abstract): | The scientific study of multi-phase flows is a challenging task for analytical and experimental works. Thus, sophisticated and specialized numerical methods are in need for the direct numerical simulation of such problems. In this work a high-order multi-phase flow solver on the basis of the extended Discontinuous Galerkin (extended DG/XDG) method is developed. This allows the direct numerical simulation of the transient incompressible two-phase Navier-Stokes equations in their sharp interface formulation. The approximation space of the local ansatz-functions is adapted to be conform to the position of the interface. The interface, described as a level-set function, is discretized by a standard DG method that enables a sub-cell accurate representation of sharp jumps in the pressure field and kinks in the velocity field. For the numerical treatment of the surface tension force the Laplace-Beltrami formulation without regularization is implemented. Stability issues regarding the energy conservation of the solver are addressed. The developed solver is validated against a wide range of typical two-phase surface tension driven flow phenomena including capillary waves, an oscillating droplet and a rising bubble. Allowing the simulation of dynamic contact line problems, the generalized Navier boundary condition is adapted for the XDG discretization. The results regarding the rise of liquid in a capillary build the basis of a new benchmark setup for capillarity driven flow problems. Another extension of the solver is the implementation of the coupled two-phase heat equation in context of the XDG method. Furthermore, the discretization for both the Navier-Stokes equations and the heat equation is extended to allow a mass and energy flow across the interface. This way the velocity field exhibits a sharp jump and the temperature field shows a kink at the interface. A first basic validation is provided against analytical solutions. This work presents a multi-purpose flow solver for the direct simulation of multi-phase flows involving dynamic contact lines and phase changes due to evaporation. It is based on the XDG method to allow a sub-cell accurate approximation in context of the sharp interface formulation. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Status: | Verlagsversion | ||||
URN: | urn:nbn:de:tuda-tuprints-173763 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
||||
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet für Strömungsdynamik (fdy) 16 Fachbereich Maschinenbau > Fachgebiet für Strömungsdynamik (fdy) > Mehrphasenströmung 16 Fachbereich Maschinenbau > Fachgebiet für Strömungsdynamik (fdy) > Numerische Strömungssimulation DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich B: Modellierung und Simulation > B06: Verfahren höherer Ordnung für die direkte numerische Simulation von Be- und Entnetzungsproblemen auf Basis der Discontinuous Galerkin Methode Exzellenzinitiative Exzellenzinitiative > Graduiertenschulen Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE) |
||||
Hinterlegungsdatum: | 12 Mär 2021 09:29 | ||||
Letzte Änderung: | 16 Mär 2021 06:10 | ||||
PPN: | |||||
Referenten: | Oberlack, Prof. Dr. Martin ; Bothe, Prof. Dr. Dieter | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 20 Oktober 2020 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |