Kettner, Marvin (2021)
Persistence exponents via perturbation theory : autoregressive and moving average processes.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00017566
Dissertation, Erstveröffentlichung, Verlagsversion
Kurzbeschreibung (Abstract)
In this thesis, the persistence problem in the context of Markov chains is studied. We are mainly concerned with processes where the persistence probability converges to zero at exponential speed and we are interested in the rate of decay, the so-called persistence exponent. For the main results, we use methods from perturbation theory. This approach is completely new in the field of persistence. For this reason, we provide a mostly self-contained presentation of the used theorems of perturbation theory. We show that the persistence exponent of an autoregressive process of order one can be expressed as a power series in the parameter of the autoregressive process. Additionally, we derive an iterative formula for the coefficients of this power series representation. For moving average processes of order one similar results as in the autoregressive case are derived.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2021 | ||||
Autor(en): | Kettner, Marvin | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Persistence exponents via perturbation theory : autoregressive and moving average processes | ||||
Sprache: | Englisch | ||||
Referenten: | Aurzada, Prof. Dr. Frank ; Wachtel, Prof. Dr. Vitali | ||||
Publikationsjahr: | 2021 | ||||
Ort: | Darmstadt | ||||
Kollation: | iv, 63 Seiten | ||||
Datum der mündlichen Prüfung: | 14 Januar 2021 | ||||
DOI: | 10.26083/tuprints-00017566 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/17566 | ||||
Kurzbeschreibung (Abstract): | In this thesis, the persistence problem in the context of Markov chains is studied. We are mainly concerned with processes where the persistence probability converges to zero at exponential speed and we are interested in the rate of decay, the so-called persistence exponent. For the main results, we use methods from perturbation theory. This approach is completely new in the field of persistence. For this reason, we provide a mostly self-contained presentation of the used theorems of perturbation theory. We show that the persistence exponent of an autoregressive process of order one can be expressed as a power series in the parameter of the autoregressive process. Additionally, we derive an iterative formula for the coefficients of this power series representation. For moving average processes of order one similar results as in the autoregressive case are derived. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Status: | Verlagsversion | ||||
URN: | urn:nbn:de:tuda-tuprints-175661 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik | ||||
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Stochastik |
||||
Hinterlegungsdatum: | 03 Mär 2021 12:33 | ||||
Letzte Änderung: | 09 Mär 2021 08:48 | ||||
PPN: | |||||
Referenten: | Aurzada, Prof. Dr. Frank ; Wachtel, Prof. Dr. Vitali | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 14 Januar 2021 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |