TU Darmstadt / ULB / TUbiblio

Single-to-Multi-Theorem Transformations for Non-Interactive Statistical Zero-Knowledge

Fischlin, Marc ; Rohrbach, Felix (2021)
Single-to-Multi-Theorem Transformations for Non-Interactive Statistical Zero-Knowledge.
24th International Conference on Practice and Theory of Public-Key Cryptography. virtual Conference (10.05.2021-13.05.2021)
doi: 10.1007/978-3-030-75248-4_8
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Non-interactive zero-knowledge proofs or arguments allow a prover to show validity of a statement without further interaction. For non-trivial statements such protocols require a setup assumption in form of a common random or reference string (CRS). Generally, the CRS can only be used for one statement (single-theorem zero-knowledge) such that a fresh CRS would need to be generated for each proof. Fortunately, Feige, Lapidot and Shamir (FOCS 1990) presented a transformation for any non-interactive zero-knowledge proof system that allows the CRS to be reused any polynomial number of times (multi-theorem zero-knowledge). This FLS transformation, however, is only known to work for either computational zero-knowledge or requires a structured, non-uniform common reference string. In this paper we present FLS-like transformations that work for non-interactive statistical zero-knowledge arguments in the common random string model. They allow to go from single-theorem to multi-theorem zero-knowledge and also preserve soundness, for both properties in the adaptive and non-adaptive case. Our first transformation is based on the general assumption that one-way permutations exist, while our second transformation uses lattice-based assumptions. Additionally, we define different possible soundness notions for non-interactive arguments and discuss their relationships.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Fischlin, Marc ; Rohrbach, Felix
Art des Eintrags: Bibliographie
Titel: Single-to-Multi-Theorem Transformations for Non-Interactive Statistical Zero-Knowledge
Sprache: Englisch
Publikationsjahr: 1 Mai 2021
Verlag: Springer
Buchtitel: Public-Key Cryptography - PKC 2021
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 12711
Veranstaltungstitel: 24th International Conference on Practice and Theory of Public-Key Cryptography
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 10.05.2021-13.05.2021
DOI: 10.1007/978-3-030-75248-4_8
URL / URN: https://pkc.iacr.org/2021/
Zugehörige Links:
Kurzbeschreibung (Abstract):

Non-interactive zero-knowledge proofs or arguments allow a prover to show validity of a statement without further interaction. For non-trivial statements such protocols require a setup assumption in form of a common random or reference string (CRS). Generally, the CRS can only be used for one statement (single-theorem zero-knowledge) such that a fresh CRS would need to be generated for each proof. Fortunately, Feige, Lapidot and Shamir (FOCS 1990) presented a transformation for any non-interactive zero-knowledge proof system that allows the CRS to be reused any polynomial number of times (multi-theorem zero-knowledge). This FLS transformation, however, is only known to work for either computational zero-knowledge or requires a structured, non-uniform common reference string. In this paper we present FLS-like transformations that work for non-interactive statistical zero-knowledge arguments in the common random string model. They allow to go from single-theorem to multi-theorem zero-knowledge and also preserve soundness, for both properties in the adaptive and non-adaptive case. Our first transformation is based on the general assumption that one-way permutations exist, while our second transformation uses lattice-based assumptions. Additionally, we define different possible soundness notions for non-interactive arguments and discuss their relationships.

Freie Schlagworte: Solutions, S4
Zusätzliche Informationen:

Proceedings, Part II

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Kryptographie und Komplexitätstheorie
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
Profilbereiche
Profilbereiche > Cybersicherheit (CYSEC)
Forschungsfelder
Forschungsfelder > Information and Intelligence
Forschungsfelder > Information and Intelligence > Cybersecurity & Privacy
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1119: CROSSING – Kryptographiebasierte Sicherheitslösungen als Grundlage für Vertrauen in heutigen und zukünftigen IT-Systemen
Hinterlegungsdatum: 01 Mär 2021 07:38
Letzte Änderung: 09 Sep 2022 08:32
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen