TU Darmstadt / ULB / TUbiblio

Mesoscopic Modeling of the Mechanically Tunable Electrical Conductivity of ZnO Varistors

Taylor, Kyle ; Gjonaj, Erion ; Zhou, Z. ; Xu, B. (2020)
Mesoscopic Modeling of the Mechanically Tunable Electrical Conductivity of ZnO Varistors.
In: Journal of Applied Physics, 127 (15)
doi: 10.1063/1.5142231
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

An electromechanically coupled model for the simulation of electric current flow in ZnO varistors is presented. The model is based on an equivalent circuit representation of the varistor microstructure, where the grain boundaries are modeled as nonlinear resistors in the circuit. This approach extends on previous circuit models by including the effect of mechanical stress on grain boundary conductivity. The 3D mechanical stress distribution in the material is calculated by the finite element method. Using this distribution, the electrical resistance of each grain boundary is determined by applying a self-consistent model for the trapped interface charge induced by piezoelectric polarization. Finally, the electric current flow patterns and the bulk conductivity of the material are computed using the nonlinear circuit model. The simulated IV-characteristics reveal a significant sensitivity of electrical conductivity to applied stress. For 2D and 3D ZnO varistor models, the simulations demonstrate the effect of current concentration along thin conducting paths depending on microstructure properties and on the mechanical stress condition of the material.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Taylor, Kyle ; Gjonaj, Erion ; Zhou, Z. ; Xu, B.
Art des Eintrags: Bibliographie
Titel: Mesoscopic Modeling of the Mechanically Tunable Electrical Conductivity of ZnO Varistors
Sprache: Englisch
Publikationsjahr: 21 April 2020
Verlag: AIP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Applied Physics
Jahrgang/Volume einer Zeitschrift: 127
(Heft-)Nummer: 15
DOI: 10.1063/1.5142231
Kurzbeschreibung (Abstract):

An electromechanically coupled model for the simulation of electric current flow in ZnO varistors is presented. The model is based on an equivalent circuit representation of the varistor microstructure, where the grain boundaries are modeled as nonlinear resistors in the circuit. This approach extends on previous circuit models by including the effect of mechanical stress on grain boundary conductivity. The 3D mechanical stress distribution in the material is calculated by the finite element method. Using this distribution, the electrical resistance of each grain boundary is determined by applying a self-consistent model for the trapped interface charge induced by piezoelectric polarization. Finally, the electric current flow patterns and the bulk conductivity of the material are computed using the nonlinear circuit model. The simulated IV-characteristics reveal a significant sensitivity of electrical conductivity to applied stress. For 2D and 3D ZnO varistor models, the simulations demonstrate the effect of current concentration along thin conducting paths depending on microstructure properties and on the mechanical stress condition of the material.

Zusätzliche Informationen:

TEMF-Pub-DB TEMF002763, Art.No.: 155104

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Theorie Elektromagnetischer Felder (ab 01.01.2019 umbenannt in Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder)
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Teilchenbeschleunigung und Theorie Elektromagnetische Felder
Hinterlegungsdatum: 19 Feb 2021 11:27
Letzte Änderung: 19 Feb 2021 11:27
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen