Möller, Sven (2021)
A Cyclic Orbifold Theory for Holomorphic Vertex Operator Algebras and Applications.
doi: 10.26083/tuprints-00017356
Buch, Erstveröffentlichung, Verlagsversion
Kurzbeschreibung (Abstract)
In this thesis we develop an orbifold theory for a finite, cyclic group G acting on a suitably regular, holomorphic vertex operator algebra V. To this end we describe the fusion algebra of the fixed-point vertex operator subalgebra V^G and show that V^G has group-like fusion. Then we solve the extension problem for vertex operator algebras with group-like fusion.
We use these results to construct five new holomorphic vertex operator algebras of central charge 24 as lattice orbifolds, contributing to the classification of the V_1-structures of suitably regular, holomorphic vertex operator algebras of central charge 24.
As another application we present the BRST construction of ten Borcherds-Kac-Moody algebras whose denominator identities are completely reflective automorphic products of singular weight.
Typ des Eintrags: | Buch | ||||
---|---|---|---|---|---|
Erschienen: | 2021 | ||||
Autor(en): | Möller, Sven | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | A Cyclic Orbifold Theory for Holomorphic Vertex Operator Algebras and Applications | ||||
Sprache: | Englisch | ||||
Referenten: | Scheithauer, Prof. Dr. Nils ; Möller, Prof. Dr. Martin ; Höhn, Prof. Dr. Gerald | ||||
Publikationsjahr: | 29 November 2021 | ||||
Ort: | Darmstadt | ||||
Datum der mündlichen Prüfung: | 15 September 2016 | ||||
Auflage: | minor revisions, as of Dec. 2020 | ||||
DOI: | 10.26083/tuprints-00017356 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/17356 | ||||
Zugehörige Links: | |||||
Kurzbeschreibung (Abstract): | In this thesis we develop an orbifold theory for a finite, cyclic group G acting on a suitably regular, holomorphic vertex operator algebra V. To this end we describe the fusion algebra of the fixed-point vertex operator subalgebra V^G and show that V^G has group-like fusion. Then we solve the extension problem for vertex operator algebras with group-like fusion. We use these results to construct five new holomorphic vertex operator algebras of central charge 24 as lattice orbifolds, contributing to the classification of the V_1-structures of suitably regular, holomorphic vertex operator algebras of central charge 24. As another application we present the BRST construction of ten Borcherds-Kac-Moody algebras whose denominator identities are completely reflective automorphic products of singular weight. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Freie Schlagworte: | vertex operator algebras, orbifold theory, extension problem, generalised Kac-Moody algebras | ||||
Status: | Verlagsversion | ||||
URN: | urn:nbn:de:tuda-tuprints-173568 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik | ||||
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Algebra 04 Fachbereich Mathematik > Algebra > Unendlichdimensionale Lie-Algebren, Vertexalgebren, Automorphe Formen |
||||
Hinterlegungsdatum: | 09 Feb 2021 08:49 | ||||
Letzte Änderung: | 17 Feb 2021 08:58 | ||||
PPN: | |||||
Referenten: | Scheithauer, Prof. Dr. Nils ; Möller, Prof. Dr. Martin ; Höhn, Prof. Dr. Gerald | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 15 September 2016 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |