TU Darmstadt / ULB / TUbiblio

Long Live Randomization: On Privacy-Preserving Contact Tracing in Pandemic

Nguyen, Thien Duc ; Miettinen, Markus ; Sadeghi, Ahmad-Reza (2020)
Long Live Randomization: On Privacy-Preserving Contact Tracing in Pandemic.
CCS '20: 2020 ACM SIGSAC Conference on Computer and Communications Security. virtual Conference (09.11.2020-13.11.2020)
doi: 10.1145/3411496.3421229
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Caused by coronavirus SARS-CoV-2, the COVID-19 disease spreads particularly through direct contact between people. Health authorities face the challenge of identifying and isolating infection chains to prevent the pandemic from spreading further. To improve the efficiency and effectiveness of manual contact tracing, many countries have recently introduced digital contact tracing apps running on smartphones of users for helping to identify contacts between individual users. These apps are usually based on beaconing pseudonymous identifiers over a proximity communication protocol like Bluetooth LE. The identification of potentially critical contacts is then performed by comparing the identifiers emitted by persons reported as infected and the identifiers observed by other users of the system and issuing appropriate warnings to them in case a matching identifier is found. However, by beaconing identifiers into their proximity, individual users potentially become traceable by entities that systematically collect observations in various places. To preserve privacy of users and be compliant to various privacy regulations many proposed systems use ephemeral, pseudo-random identifiers that are more difficult to link together.In this paper, we briefly analyze and discuss privacy properties of a selected number of proposed contact tracing solutions and the impact of the applied randomization approaches. We also discuss the pros and cons of these tracing schemes.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Nguyen, Thien Duc ; Miettinen, Markus ; Sadeghi, Ahmad-Reza
Art des Eintrags: Bibliographie
Titel: Long Live Randomization: On Privacy-Preserving Contact Tracing in Pandemic
Sprache: Englisch
Publikationsjahr: November 2020
Verlag: ACM
Buchtitel: MTD'20: Proceedings of the 7th ACM Workshop on Moving Target Defense
Veranstaltungstitel: CCS '20: 2020 ACM SIGSAC Conference on Computer and Communications Security
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 09.11.2020-13.11.2020
DOI: 10.1145/3411496.3421229
Zugehörige Links:
Kurzbeschreibung (Abstract):

Caused by coronavirus SARS-CoV-2, the COVID-19 disease spreads particularly through direct contact between people. Health authorities face the challenge of identifying and isolating infection chains to prevent the pandemic from spreading further. To improve the efficiency and effectiveness of manual contact tracing, many countries have recently introduced digital contact tracing apps running on smartphones of users for helping to identify contacts between individual users. These apps are usually based on beaconing pseudonymous identifiers over a proximity communication protocol like Bluetooth LE. The identification of potentially critical contacts is then performed by comparing the identifiers emitted by persons reported as infected and the identifiers observed by other users of the system and issuing appropriate warnings to them in case a matching identifier is found. However, by beaconing identifiers into their proximity, individual users potentially become traceable by entities that systematically collect observations in various places. To preserve privacy of users and be compliant to various privacy regulations many proposed systems use ephemeral, pseudo-random identifiers that are more difficult to link together.In this paper, we briefly analyze and discuss privacy properties of a selected number of proposed contact tracing solutions and the impact of the applied randomization approaches. We also discuss the pros and cons of these tracing schemes.

Schlagworte:
Einzelne SchlagworteSprache
contact tracingEnglisch
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Systemsicherheit
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
Profilbereiche
Profilbereiche > Cybersicherheit (CYSEC)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1119: CROSSING – Kryptographiebasierte Sicherheitslösungen als Grundlage für Vertrauen in heutigen und zukünftigen IT-Systemen
Hinterlegungsdatum: 03 Feb 2021 15:00
Letzte Änderung: 03 Feb 2021 15:00
PPN:
Schlagworte:
Einzelne SchlagworteSprache
contact tracingEnglisch
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen