TU Darmstadt / ULB / TUbiblio

Micro Stripes Analyses for Iris Presentation Attack Detection

Fang, Meiling ; Damer, Naser ; Kirchbuchner, Florian ; Kuijper, Arjan (2020)
Micro Stripes Analyses for Iris Presentation Attack Detection.
2020 IEEE International Joint Conference on Biometrics (IJCB). virtual Conference (28.09.2020-01.10.2020)
doi: 10.1109/IJCB48548.2020.9304886
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Iris recognition systems are vulnerable to the presentation attacks, such as textured contact lenses or printed images. In this paper, we propose a lightweight framework to detect iris presentation attacks by extracting multiple micro-stripes of expanded normalized iris textures. In this procedure, a standard iris segmentation is modified. For our Presentation Attack Detection (PAD) network to better model the classification problem, the segmented area is processed to provide lower dimensional input segments and a higher number of learning samples. Our proposed Micro Stripes Analyses (MSA) solution samples the segmented areas as individual stripes. Then, the majority vote makes the final classification decision of those micro-stripes. Experiments are demonstrated on five databases, where two databases (IIITD-WVU and Notre Dame) are from the LivDet-2017 Iris competition. An in-depth experimental evaluation of this framework reveals a superior performance compared with state-of-the-art (SoTA) algorithms. Moreover, our solution minimizes the confusion between textured (attack) and soft (bona fide) contact lens presentations.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Fang, Meiling ; Damer, Naser ; Kirchbuchner, Florian ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: Micro Stripes Analyses for Iris Presentation Attack Detection
Sprache: Englisch
Publikationsjahr: 2020
Verlag: IEEE
Veranstaltungstitel: 2020 IEEE International Joint Conference on Biometrics (IJCB)
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 28.09.2020-01.10.2020
DOI: 10.1109/IJCB48548.2020.9304886
Kurzbeschreibung (Abstract):

Iris recognition systems are vulnerable to the presentation attacks, such as textured contact lenses or printed images. In this paper, we propose a lightweight framework to detect iris presentation attacks by extracting multiple micro-stripes of expanded normalized iris textures. In this procedure, a standard iris segmentation is modified. For our Presentation Attack Detection (PAD) network to better model the classification problem, the segmented area is processed to provide lower dimensional input segments and a higher number of learning samples. Our proposed Micro Stripes Analyses (MSA) solution samples the segmented areas as individual stripes. Then, the majority vote makes the final classification decision of those micro-stripes. Experiments are demonstrated on five databases, where two databases (IIITD-WVU and Notre Dame) are from the LivDet-2017 Iris competition. An in-depth experimental evaluation of this framework reveals a superior performance compared with state-of-the-art (SoTA) algorithms. Moreover, our solution minimizes the confusion between textured (attack) and soft (bona fide) contact lens presentations.

Freie Schlagworte: Biometrics, Machine learning, Artificial intelligence (AI), Iris recognition, Spoofing attacks
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 01 Feb 2021 08:08
Letzte Änderung: 01 Feb 2021 08:08
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen