TU Darmstadt / ULB / TUbiblio

Synthetic protein switches: Combinatorial linker engineering with iFLinkC.

Gräwe, Alexander ; Ranglack, Jan ; Weyrich, Anastasia ; Stein, Viktor (2021)
Synthetic protein switches: Combinatorial linker engineering with iFLinkC.
In: Methods in enzymology, 647
doi: 10.1016/bs.mie.2020.09.009
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Linker engineering constitutes a critical, yet frequently underestimated aspect in the construction of synthetic protein switches and sensors. Notably, systematic strategies to engineer linkers by predictive means remain largely elusive to date. This is primarily due to our insufficient understanding how the biophysical properties that underlie linker functions mediate the conformational transitions in artificially engineered protein switches and sensors. The construction of synthetic protein switches and sensors therefore heavily relies on experimental trial-and-error. Yet, methods for effectively generating linker diversity at the genetic level are scarce. Addressing this technical shortcoming, iterative functional linker cloning (iFLinkC) enables the combinatorial assembly of linker elements with functional domains from sequence verified repositories that are developed and stored in-house. The assembly process is highly scalable and given its recursive nature generates linker diversity in a combinatorial and exponential fashion based on a limited number of linker elements.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Gräwe, Alexander ; Ranglack, Jan ; Weyrich, Anastasia ; Stein, Viktor
Art des Eintrags: Bibliographie
Titel: Synthetic protein switches: Combinatorial linker engineering with iFLinkC.
Sprache: Englisch
Publikationsjahr: Januar 2021
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Methods in enzymology
Jahrgang/Volume einer Zeitschrift: 647
DOI: 10.1016/bs.mie.2020.09.009
Kurzbeschreibung (Abstract):

Linker engineering constitutes a critical, yet frequently underestimated aspect in the construction of synthetic protein switches and sensors. Notably, systematic strategies to engineer linkers by predictive means remain largely elusive to date. This is primarily due to our insufficient understanding how the biophysical properties that underlie linker functions mediate the conformational transitions in artificially engineered protein switches and sensors. The construction of synthetic protein switches and sensors therefore heavily relies on experimental trial-and-error. Yet, methods for effectively generating linker diversity at the genetic level are scarce. Addressing this technical shortcoming, iterative functional linker cloning (iFLinkC) enables the combinatorial assembly of linker elements with functional domains from sequence verified repositories that are developed and stored in-house. The assembly process is highly scalable and given its recursive nature generates linker diversity in a combinatorial and exponential fashion based on a limited number of linker elements.

ID-Nummer: pmid:33482991
Fachbereich(e)/-gebiet(e): 10 Fachbereich Biologie
10 Fachbereich Biologie > Protein Engineering of Ion Conducting Nanopores
Hinterlegungsdatum: 25 Jan 2021 14:05
Letzte Änderung: 25 Jan 2021 14:05
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen