TU Darmstadt / ULB / TUbiblio

Demographic Bias in Presentation Attack Detection of Iris Recognition Systems

Fang, Meiling ; Damer, Naser ; Kirchbuchner, Florian ; Kuijper, Arjan (2021)
Demographic Bias in Presentation Attack Detection of Iris Recognition Systems.
28th European Signal Processing Conference. virtual Conference (18.01.2021-21.01.2021)
doi: 10.23919/Eusipco47968.2020.9287321
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

With the widespread use of biometric systems, the demographic bias problem raises more attention. Although many studies addressed bias issues in biometric verification, there are no works that analyze the bias in presentation attack detection (PAD) decisions. Hence, we investigate and analyze the demographic bias in iris PAD algorithms in this paper. To enable a clear discussion, we adapt the notions of differential performance and differential outcome to the PAD problem. We study the bias in iris PAD using three baselines (hand-crafted, transfer-learning, and training from scratch) using the NDCLD- 2013 [18] database. The experimental results point out that female users will be significantly less protected by the PAD, in comparison to males.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2021
Autor(en): Fang, Meiling ; Damer, Naser ; Kirchbuchner, Florian ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: Demographic Bias in Presentation Attack Detection of Iris Recognition Systems
Sprache: Englisch
Publikationsjahr: 22 Januar 2021
Verlag: IEEE
Buchtitel: 28th European Signal Processing Conference (EUSIPCO 2020) : Proceedings
Veranstaltungstitel: 28th European Signal Processing Conference
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 18.01.2021-21.01.2021
DOI: 10.23919/Eusipco47968.2020.9287321
Zugehörige Links:
Kurzbeschreibung (Abstract):

With the widespread use of biometric systems, the demographic bias problem raises more attention. Although many studies addressed bias issues in biometric verification, there are no works that analyze the bias in presentation attack detection (PAD) decisions. Hence, we investigate and analyze the demographic bias in iris PAD algorithms in this paper. To enable a clear discussion, we adapt the notions of differential performance and differential outcome to the PAD problem. We study the bias in iris PAD using three baselines (hand-crafted, transfer-learning, and training from scratch) using the NDCLD- 2013 [18] database. The experimental results point out that female users will be significantly less protected by the PAD, in comparison to males.

Freie Schlagworte: Biometrics, Computer vision, Machine learning
Zusätzliche Informationen:

28th European Signal Processing Conference, EUSIPCO 2020, which will be held in the Beurs van Berlage (Amsterdam Conference Centre) from January 18 to January 22, 2021. The EURASIP board of directors have decided to reschedule the physical conference from August 24 - 28, 2020, to January 18 - 22, 2021.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 25 Jan 2021 11:45
Letzte Änderung: 25 Jan 2021 11:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen