TU Darmstadt / ULB / TUbiblio

Style-transfer GANs for bridging the domain gap in synthetic pose estimator training

Rojtberg, Pavel ; Pollabauer, Thomas ; Kuijper, Arjan (2020)
Style-transfer GANs for bridging the domain gap in synthetic pose estimator training.
International Conference on Artificial Intelligence and Virtual Reality (AIVR 2020). virtual Conference (14.12.2020-18.12.2020)
doi: 10.1109/AIVR50618.2020.00039
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Given the dependency of current CNN architectures on a large training set, the possibility of using synthetic data is alluring as it allows generating a virtually infinite amount of labeled training data. However, producing such data is a nontrivial task as current CNN architectures are sensitive to the domain gap between real and synthetic data.We propose to adopt general-purpose GAN models for pixellevel image translation, allowing to formulate the domain gap itself as a learning problem. The obtained models are then used either during training or inference to bridge the domain gap. Here, we focus on training the single-stage YOLO6D [20] object pose estimator on synthetic CAD geometry only, where not even approximate surface information is available. When employing paired GAN models, we use an edge-based intermediate domain and introduce different mappings to represent the unknown surface properties.Our evaluation shows a considerable improvement in model performance when compared to a model trained with the same degree of domain randomization, while requiring only very little additional effort.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Rojtberg, Pavel ; Pollabauer, Thomas ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: Style-transfer GANs for bridging the domain gap in synthetic pose estimator training
Sprache: Englisch
Publikationsjahr: 2020
Verlag: IEEE
Buchtitel: Proceedings : 2020 IEEE International Conference on Artificial Intelligence and Virtual Reality
Veranstaltungstitel: International Conference on Artificial Intelligence and Virtual Reality (AIVR 2020)
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 14.12.2020-18.12.2020
DOI: 10.1109/AIVR50618.2020.00039
Kurzbeschreibung (Abstract):

Given the dependency of current CNN architectures on a large training set, the possibility of using synthetic data is alluring as it allows generating a virtually infinite amount of labeled training data. However, producing such data is a nontrivial task as current CNN architectures are sensitive to the domain gap between real and synthetic data.We propose to adopt general-purpose GAN models for pixellevel image translation, allowing to formulate the domain gap itself as a learning problem. The obtained models are then used either during training or inference to bridge the domain gap. Here, we focus on training the single-stage YOLO6D [20] object pose estimator on synthetic CAD geometry only, where not even approximate surface information is available. When employing paired GAN models, we use an edge-based intermediate domain and introduce different mappings to represent the unknown surface properties.Our evaluation shows a considerable improvement in model performance when compared to a model trained with the same degree of domain randomization, while requiring only very little additional effort.

Freie Schlagworte: Training, Solid modeling, Pose estimation, Data models
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 25 Jan 2021 11:28
Letzte Änderung: 25 Jan 2021 11:28
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen