Rojtberg, Pavel ; Pollabauer, Thomas ; Kuijper, Arjan (2020)
Style-transfer GANs for bridging the domain gap in synthetic pose estimator training.
International Conference on Artificial Intelligence and Virtual Reality (AIVR 2020). virtual Conference (14.12.2020-18.12.2020)
doi: 10.1109/AIVR50618.2020.00039
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Given the dependency of current CNN architectures on a large training set, the possibility of using synthetic data is alluring as it allows generating a virtually infinite amount of labeled training data. However, producing such data is a nontrivial task as current CNN architectures are sensitive to the domain gap between real and synthetic data.We propose to adopt general-purpose GAN models for pixellevel image translation, allowing to formulate the domain gap itself as a learning problem. The obtained models are then used either during training or inference to bridge the domain gap. Here, we focus on training the single-stage YOLO6D [20] object pose estimator on synthetic CAD geometry only, where not even approximate surface information is available. When employing paired GAN models, we use an edge-based intermediate domain and introduce different mappings to represent the unknown surface properties.Our evaluation shows a considerable improvement in model performance when compared to a model trained with the same degree of domain randomization, while requiring only very little additional effort.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2020 |
Autor(en): | Rojtberg, Pavel ; Pollabauer, Thomas ; Kuijper, Arjan |
Art des Eintrags: | Bibliographie |
Titel: | Style-transfer GANs for bridging the domain gap in synthetic pose estimator training |
Sprache: | Englisch |
Publikationsjahr: | 2020 |
Verlag: | IEEE |
Buchtitel: | Proceedings : 2020 IEEE International Conference on Artificial Intelligence and Virtual Reality |
Veranstaltungstitel: | International Conference on Artificial Intelligence and Virtual Reality (AIVR 2020) |
Veranstaltungsort: | virtual Conference |
Veranstaltungsdatum: | 14.12.2020-18.12.2020 |
DOI: | 10.1109/AIVR50618.2020.00039 |
Kurzbeschreibung (Abstract): | Given the dependency of current CNN architectures on a large training set, the possibility of using synthetic data is alluring as it allows generating a virtually infinite amount of labeled training data. However, producing such data is a nontrivial task as current CNN architectures are sensitive to the domain gap between real and synthetic data.We propose to adopt general-purpose GAN models for pixellevel image translation, allowing to formulate the domain gap itself as a learning problem. The obtained models are then used either during training or inference to bridge the domain gap. Here, we focus on training the single-stage YOLO6D [20] object pose estimator on synthetic CAD geometry only, where not even approximate surface information is available. When employing paired GAN models, we use an edge-based intermediate domain and introduce different mappings to represent the unknown surface properties.Our evaluation shows a considerable improvement in model performance when compared to a model trained with the same degree of domain randomization, while requiring only very little additional effort. |
Freie Schlagworte: | Training, Solid modeling, Pose estimation, Data models |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Graphisch-Interaktive Systeme 20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing |
Hinterlegungsdatum: | 25 Jan 2021 11:28 |
Letzte Änderung: | 25 Jan 2021 11:28 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |