TU Darmstadt / ULB / TUbiblio

Design of Lead-Free Antiferroelectric (1 − x)NaNbO3−xSrSnO3 Compositions Guided by First-Principles Calculations

Zhang, Mao-Hua ; Hadaeghi, Niloofar ; Egert, Sonja ; Ding, Hui ; Zhang, Hongbin ; Groszewicz, Pedro B. ; Buntkowsky, Gerd ; Klein, Andreas ; Koruza, Jurij (2021)
Design of Lead-Free Antiferroelectric (1 − x)NaNbO3−xSrSnO3 Compositions Guided by First-Principles Calculations.
In: Chemistry of Materials, 33 (1)
doi: 10.1021/acs.chemmater.0c03685
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Antiferroelectric materials exhibit a unique electricfield- induced phase transition, which enables their use in energy storage, electrocaloric cooling, and nonvolatile memory applications. However, in many prototype antiferroelectrics this transition is irreversible, which prevents their implementation. In this work, we demonstrate a general approach to promote the reversibility of this phase transition by targeted modification of the material’s local structure. A new NaNbO3-based composition, namely (1− x)NaNbO3−xSrSnO3, was designed with a combination of firstprinciples calculations and experimental characterization. Our theoretical study predicts stabilization of the antiferroelectric state over the ferroelectric state with an energy difference of 1.4 meV/f.u. when 6.25 mol % of SrSnO3 is incorporated into NaNbO3. A series of samples was prepared using solid-state reactions, and the structural changes upon SrSnO3 incorporation were investigated using X-ray diffraction and 23Na solid-state nuclear magnetic resonance spectroscopy. The results revealed an increase in the unit cell volume and a more disordered, yet less distorted local Na environment, which were related to the stabilization of the antiferroelectric order. The SrSnO3-modified compositions exhibited well-defined double polarization loops and an eight times higher energy storage density as compared to unmodified NaNbO3. Our results indicate that this first-principles calculations based approach is of great potential for the design of new antiferroelectric compositions.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Zhang, Mao-Hua ; Hadaeghi, Niloofar ; Egert, Sonja ; Ding, Hui ; Zhang, Hongbin ; Groszewicz, Pedro B. ; Buntkowsky, Gerd ; Klein, Andreas ; Koruza, Jurij
Art des Eintrags: Bibliographie
Titel: Design of Lead-Free Antiferroelectric (1 − x)NaNbO3−xSrSnO3 Compositions Guided by First-Principles Calculations
Sprache: Englisch
Publikationsjahr: 12 Januar 2021
Verlag: ACS Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Chemistry of Materials
Jahrgang/Volume einer Zeitschrift: 33
(Heft-)Nummer: 1
DOI: 10.1021/acs.chemmater.0c03685
URL / URN: https://pubs.acs.org/doi/10.1021/acs.chemmater.0c03685
Kurzbeschreibung (Abstract):

Antiferroelectric materials exhibit a unique electricfield- induced phase transition, which enables their use in energy storage, electrocaloric cooling, and nonvolatile memory applications. However, in many prototype antiferroelectrics this transition is irreversible, which prevents their implementation. In this work, we demonstrate a general approach to promote the reversibility of this phase transition by targeted modification of the material’s local structure. A new NaNbO3-based composition, namely (1− x)NaNbO3−xSrSnO3, was designed with a combination of firstprinciples calculations and experimental characterization. Our theoretical study predicts stabilization of the antiferroelectric state over the ferroelectric state with an energy difference of 1.4 meV/f.u. when 6.25 mol % of SrSnO3 is incorporated into NaNbO3. A series of samples was prepared using solid-state reactions, and the structural changes upon SrSnO3 incorporation were investigated using X-ray diffraction and 23Na solid-state nuclear magnetic resonance spectroscopy. The results revealed an increase in the unit cell volume and a more disordered, yet less distorted local Na environment, which were related to the stabilization of the antiferroelectric order. The SrSnO3-modified compositions exhibited well-defined double polarization loops and an eight times higher energy storage density as compared to unmodified NaNbO3. Our results indicate that this first-principles calculations based approach is of great potential for the design of new antiferroelectric compositions.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
LOEWE
LOEWE > LOEWE-Schwerpunkte
LOEWE > LOEWE-Schwerpunkte > FLAME - Fermi Level Engineering Antiferroelektrischer Materialien für Energiespeicher und Isolatoren
Hinterlegungsdatum: 13 Jan 2021 07:14
Letzte Änderung: 21 Jul 2021 09:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen