Geßner, Felix ; Weigold, Matthias ; Abele, Eberhard (2020)
Measuring and Modelling of Process Forces During Tapping Using Single Tooth Analogy Process.
In: Production Engineering : WGP
doi: 10.1007/s11740-020-01004-4
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
For machining internal threads, tapping is a commonly used process. However, due to the complex geometry of the tapping tool, each tooth has a unique geometry resulting in individual forces. Since the forces act synchronously during the process, they partly compensate each other. However, since resulting forces in tapping can cause undesired deflection of the tool which can lead to threads that are not true to gauge or tool breakage, the knowledge of the forces is crucial. To predict the occurring forces on each tooth, different modelling approaches can be used. An approach based on the chip load-cutting force relationship is the mechanistic modelling. Therefore, a suitable force model is of central importance. An empirical force model can be established using an analogy process. Within this work a single tooth analogy process is presented to measure the forces of each tooth separately. By means of a geometrical analysis of the real tool, the chip sizes, such as the cross-section area of the undeformed chip are calculated. Merging the measured process forces from the analogy process and the actual chip sizes, an empirical force model is set up using multivariate regression. The model is validated by implementing it in an existing framework and comparing the results to experimental data.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2020 |
Autor(en): | Geßner, Felix ; Weigold, Matthias ; Abele, Eberhard |
Art des Eintrags: | Bibliographie |
Titel: | Measuring and Modelling of Process Forces During Tapping Using Single Tooth Analogy Process |
Sprache: | Englisch |
Publikationsjahr: | 2 Dezember 2020 |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Production Engineering : WGP |
DOI: | 10.1007/s11740-020-01004-4 |
Kurzbeschreibung (Abstract): | For machining internal threads, tapping is a commonly used process. However, due to the complex geometry of the tapping tool, each tooth has a unique geometry resulting in individual forces. Since the forces act synchronously during the process, they partly compensate each other. However, since resulting forces in tapping can cause undesired deflection of the tool which can lead to threads that are not true to gauge or tool breakage, the knowledge of the forces is crucial. To predict the occurring forces on each tooth, different modelling approaches can be used. An approach based on the chip load-cutting force relationship is the mechanistic modelling. Therefore, a suitable force model is of central importance. An empirical force model can be established using an analogy process. Within this work a single tooth analogy process is presented to measure the forces of each tooth separately. By means of a geometrical analysis of the real tool, the chip sizes, such as the cross-section area of the undeformed chip are calculated. Merging the measured process forces from the analogy process and the actual chip sizes, an empirical force model is set up using multivariate regression. The model is validated by implementing it in an existing framework and comparing the results to experimental data. |
Freie Schlagworte: | Tapping, Modelling, Force, Torque, Analogy process |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) 16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > Zerspanungstechnologie (2021 aufgegangen in TEC Fertigungstechnologie) DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 805: Beherrschung von Unsicherheit in lasttragenden Systemen des Maschinenbaus |
Hinterlegungsdatum: | 16 Dez 2020 06:35 |
Letzte Änderung: | 14 Jan 2021 07:08 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |