Battle, Leilani ; Eichmann, Philipp ; Angelini, Marco ; Catarci, Tiziana ; Santucci, Giuseppe ; Zheng, Yukun ; Binnig, Carsten ; Fekete, Jean-Daniel ; Moritz, Dominik (2020)
Database Benchmarking for Supporting Real-Time Interactive Querying of Large Data.
SIGMOD/PODS '20: International Conference on Management of Data. virtual Conference (14.06.2020-19.06.2020)
doi: 10.1145/3318464.3389732
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
In this paper, we present a new benchmark to validate the suitability of database systems for interactive visualization workloads. While there exist proposals for evaluating database systems on interactive data exploration workloads, none rely on real user traces for database benchmarking. To this end, our long term goal is to collect user traces that represent workloads with different exploration characteristics. In this paper, we present an initial benchmark that focuses on "crossfilter"-style applications, which are a popular interaction type for data exploration and a particularly demanding scenario for testing database system performance. We make our benchmark materials, including input datasets, interaction sequences, corresponding SQL queries, and analysis code, freely available as a community resource, to foster further research in this area: https://osf.io/9xerb/?viewonly=81de1a3f99d04529b6b173a3bd5b4d23.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2020 |
Autor(en): | Battle, Leilani ; Eichmann, Philipp ; Angelini, Marco ; Catarci, Tiziana ; Santucci, Giuseppe ; Zheng, Yukun ; Binnig, Carsten ; Fekete, Jean-Daniel ; Moritz, Dominik |
Art des Eintrags: | Bibliographie |
Titel: | Database Benchmarking for Supporting Real-Time Interactive Querying of Large Data |
Sprache: | Englisch |
Publikationsjahr: | 2020 |
Verlag: | ACM |
Buchtitel: | Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data |
Veranstaltungstitel: | SIGMOD/PODS '20: International Conference on Management of Data |
Veranstaltungsort: | virtual Conference |
Veranstaltungsdatum: | 14.06.2020-19.06.2020 |
DOI: | 10.1145/3318464.3389732 |
Kurzbeschreibung (Abstract): | In this paper, we present a new benchmark to validate the suitability of database systems for interactive visualization workloads. While there exist proposals for evaluating database systems on interactive data exploration workloads, none rely on real user traces for database benchmarking. To this end, our long term goal is to collect user traces that represent workloads with different exploration characteristics. In this paper, we present an initial benchmark that focuses on "crossfilter"-style applications, which are a popular interaction type for data exploration and a particularly demanding scenario for testing database system performance. We make our benchmark materials, including input datasets, interaction sequences, corresponding SQL queries, and analysis code, freely available as a community resource, to foster further research in this area: https://osf.io/9xerb/?viewonly=81de1a3f99d04529b6b173a3bd5b4d23. |
Freie Schlagworte: | dm |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Data Management (2022 umbenannt in Data and AI Systems) |
Hinterlegungsdatum: | 14 Dez 2020 09:30 |
Letzte Änderung: | 21 Apr 2022 09:06 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |