TU Darmstadt / ULB / TUbiblio

Database Benchmarking for Supporting Real-Time Interactive Querying of Large Data

Battle, Leilani ; Eichmann, Philipp ; Angelini, Marco ; Catarci, Tiziana ; Santucci, Giuseppe ; Zheng, Yukun ; Binnig, Carsten ; Fekete, Jean-Daniel ; Moritz, Dominik (2020)
Database Benchmarking for Supporting Real-Time Interactive Querying of Large Data.
SIGMOD/PODS '20: International Conference on Management of Data. virtual Conference (14.06.2020-19.06.2020)
doi: 10.1145/3318464.3389732
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, we present a new benchmark to validate the suitability of database systems for interactive visualization workloads. While there exist proposals for evaluating database systems on interactive data exploration workloads, none rely on real user traces for database benchmarking. To this end, our long term goal is to collect user traces that represent workloads with different exploration characteristics. In this paper, we present an initial benchmark that focuses on "crossfilter"-style applications, which are a popular interaction type for data exploration and a particularly demanding scenario for testing database system performance. We make our benchmark materials, including input datasets, interaction sequences, corresponding SQL queries, and analysis code, freely available as a community resource, to foster further research in this area: https://osf.io/9xerb/?viewonly=81de1a3f99d04529b6b173a3bd5b4d23.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Battle, Leilani ; Eichmann, Philipp ; Angelini, Marco ; Catarci, Tiziana ; Santucci, Giuseppe ; Zheng, Yukun ; Binnig, Carsten ; Fekete, Jean-Daniel ; Moritz, Dominik
Art des Eintrags: Bibliographie
Titel: Database Benchmarking for Supporting Real-Time Interactive Querying of Large Data
Sprache: Englisch
Publikationsjahr: 2020
Verlag: ACM
Buchtitel: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data
Veranstaltungstitel: SIGMOD/PODS '20: International Conference on Management of Data
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 14.06.2020-19.06.2020
DOI: 10.1145/3318464.3389732
Kurzbeschreibung (Abstract):

In this paper, we present a new benchmark to validate the suitability of database systems for interactive visualization workloads. While there exist proposals for evaluating database systems on interactive data exploration workloads, none rely on real user traces for database benchmarking. To this end, our long term goal is to collect user traces that represent workloads with different exploration characteristics. In this paper, we present an initial benchmark that focuses on "crossfilter"-style applications, which are a popular interaction type for data exploration and a particularly demanding scenario for testing database system performance. We make our benchmark materials, including input datasets, interaction sequences, corresponding SQL queries, and analysis code, freely available as a community resource, to foster further research in this area: https://osf.io/9xerb/?viewonly=81de1a3f99d04529b6b173a3bd5b4d23.

Freie Schlagworte: dm
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Data Management (2022 umbenannt in Data and AI Systems)
Hinterlegungsdatum: 14 Dez 2020 09:30
Letzte Änderung: 21 Apr 2022 09:06
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen