TU Darmstadt / ULB / TUbiblio

DB4ML - An In-Memory Database Kernel with Machine Learning Support

Jasny, Matthias ; Ziegler, Tobias ; Kraska, Tim ; Roehm, Uwe ; Binnig, Carsten (2020)
DB4ML - An In-Memory Database Kernel with Machine Learning Support.
SIGMOD/PODS '20: International Conference on Management of Data. virtual Conference (14.06.2020-19.06.2020)
doi: 10.1145/3318464.3380575
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, we revisit the question of how ML algorithms can be best integrated into existing DBMSs to not only avoid expensive data copies to external ML tools but also to comply with regulatory reasons. The key observation is that database transactions already provide an execution model that allows DBMSs to efficiently mimic the execution model of modern parallel ML algorithms. As a main contribution, this paper presents DB4ML, an in-memory database kernel that allows applications to implement user-defined ML algorithms and efficiently run them inside a DBMS. Thereby, the ML algorithms are implemented using a programming model based on the idea of so called iterative transactions. Our experimental evaluation shows that DB4ML can support user-defined ML algorithms inside a DBMS with the efficiency of modern specialized ML engines. In contrast to DB4ML, these engines not only need to transfer data out of the DBMS but also hardcode the ML algorithms and thus are not extensible.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Jasny, Matthias ; Ziegler, Tobias ; Kraska, Tim ; Roehm, Uwe ; Binnig, Carsten
Art des Eintrags: Bibliographie
Titel: DB4ML - An In-Memory Database Kernel with Machine Learning Support
Sprache: Englisch
Publikationsjahr: 2020
Verlag: ACM
Buchtitel: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data
Veranstaltungstitel: SIGMOD/PODS '20: International Conference on Management of Data
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 14.06.2020-19.06.2020
DOI: 10.1145/3318464.3380575
Kurzbeschreibung (Abstract):

In this paper, we revisit the question of how ML algorithms can be best integrated into existing DBMSs to not only avoid expensive data copies to external ML tools but also to comply with regulatory reasons. The key observation is that database transactions already provide an execution model that allows DBMSs to efficiently mimic the execution model of modern parallel ML algorithms. As a main contribution, this paper presents DB4ML, an in-memory database kernel that allows applications to implement user-defined ML algorithms and efficiently run them inside a DBMS. Thereby, the ML algorithms are implemented using a programming model based on the idea of so called iterative transactions. Our experimental evaluation shows that DB4ML can support user-defined ML algorithms inside a DBMS with the efficiency of modern specialized ML engines. In contrast to DB4ML, these engines not only need to transfer data out of the DBMS but also hardcode the ML algorithms and thus are not extensible.

Freie Schlagworte: dm, dm_funding_52300543
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Data Management (2022 umbenannt in Data and AI Systems)
Hinterlegungsdatum: 14 Dez 2020 09:26
Letzte Änderung: 21 Apr 2022 09:04
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen