Sarimbekov, Aibek ; Moret, Philippe ; Binder, Walter ; Sewe, Andreas ; Mezini, Mira (2011)
Complete and Platform-Independent Calling Context Profiling for the Java Virtual Machine.
In: Electronic Notes in Theoretical Computer Science, 2020, 279 (1)
doi: 10.25534/tuprints-00014564
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Calling context profiling collects statistics separately for each calling context. Complete calling context profiles that faithfully represent overall program execution are important for a sound analysis of program behavior, which in turn is important for program understanding, reverse engineering, and workload characterization. Many existing calling context profilers for Java rely on sampling or on incomplete instrumentation techniques, yielding incomplete profiles; others rely on Java Virtual Machine (JVM) modifications or work only with one specific JVM, thus compromising portability. In this paper we present a new calling context profiler for Java that reconciles completeness of the collected profiles and full compatibility with any standard JVM. In order to reduce measurement perturbation, our profiler collects platform-independent dynamic metrics, such as the number of method invocations and the number of executed bytecodes. In contrast to prevailing calling context profilers, our tool is able to distinguish between multiple call sites in a method and supports selective profiling of (the dynamic extent of) certain methods. We have evaluate the overhead introduced by our profiler with standard Java and Scala benchmarks on a range of different JVMs.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2011 |
Autor(en): | Sarimbekov, Aibek ; Moret, Philippe ; Binder, Walter ; Sewe, Andreas ; Mezini, Mira |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Complete and Platform-Independent Calling Context Profiling for the Java Virtual Machine |
Sprache: | Englisch |
Publikationsjahr: | 2011 |
Ort: | Amsterdam |
Publikationsdatum der Erstveröffentlichung: | 2020 |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Electronic Notes in Theoretical Computer Science |
Jahrgang/Volume einer Zeitschrift: | 279 |
(Heft-)Nummer: | 1 |
DOI: | 10.25534/tuprints-00014564 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/14564 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung aus Golden Open Access |
Kurzbeschreibung (Abstract): | Calling context profiling collects statistics separately for each calling context. Complete calling context profiles that faithfully represent overall program execution are important for a sound analysis of program behavior, which in turn is important for program understanding, reverse engineering, and workload characterization. Many existing calling context profilers for Java rely on sampling or on incomplete instrumentation techniques, yielding incomplete profiles; others rely on Java Virtual Machine (JVM) modifications or work only with one specific JVM, thus compromising portability. In this paper we present a new calling context profiler for Java that reconciles completeness of the collected profiles and full compatibility with any standard JVM. In order to reduce measurement perturbation, our profiler collects platform-independent dynamic metrics, such as the number of method invocations and the number of executed bytecodes. In contrast to prevailing calling context profilers, our tool is able to distinguish between multiple call sites in a method and supports selective profiling of (the dynamic extent of) certain methods. We have evaluate the overhead introduced by our profiler with standard Java and Scala benchmarks on a range of different JVMs. |
Freie Schlagworte: | Calling Context Profiling, JP2, Bytecode Instrumentation, Dynamic Metrics |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-145646 |
Zusätzliche Informationen: | 6th Workshop on Bytecode Semantics, Verification, Analysis and Transformation (Bytecode 2011), Saarbrücken, Germany, 27.03.2011 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Softwaretechnik LOEWE LOEWE > LOEWE-Zentren LOEWE > LOEWE-Zentren > CASED – Center for Advanced Security Research Darmstadt |
Hinterlegungsdatum: | 04 Dez 2020 09:05 |
Letzte Änderung: | 08 Mai 2024 08:55 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Complete and Platform-Independent Calling Context Profiling for the Java Virtual Machine. (deposited 04 Dez 2020 09:05) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |