TU Darmstadt / ULB / TUbiblio

Automated Cephalometric LandmarkLocalization using a Coupled Shape Model

Wirtz, Andreas ; Lam, Julian ; Wesarg, Stefan (2020)
Automated Cephalometric LandmarkLocalization using a Coupled Shape Model.
In: Current Directions in Biomedical Engineering, 6 (3)
doi: 10.1515/cdbme-2020-3015
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Cephalometric analysis is an important method in orthodontics for the diagnosis and treatment of patients. It is performed manually in clinical practice, therefore automation of this time consuming task would be of great assistance. In order to provide dentists with such tools, a robust and accurate identification of the necessary landmarks is required. However, poor image quality of lateral cephalograms like low contrast or noise make this task difficult. In this paper, an approach for automatic landmark localization is presented and used to find 19 landmarks in lateral cephalometric images. An initial predicting of the individual landmark locations is done by using a 2-D coupled shape model to utilize the spatial relation between landmarks and other anatomical structures. These predictions are refined with a Hough Forest to determine the final landmark location. The approach achieves competitive performance with a successful detection rate of 70.24% on 250 images for the clinically relevant 2mm accuracy range.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Wirtz, Andreas ; Lam, Julian ; Wesarg, Stefan
Art des Eintrags: Bibliographie
Titel: Automated Cephalometric LandmarkLocalization using a Coupled Shape Model
Sprache: Englisch
Publikationsjahr: 26 November 2020
Verlag: De Gruyter
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Current Directions in Biomedical Engineering
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 3
DOI: 10.1515/cdbme-2020-3015
Kurzbeschreibung (Abstract):

Cephalometric analysis is an important method in orthodontics for the diagnosis and treatment of patients. It is performed manually in clinical practice, therefore automation of this time consuming task would be of great assistance. In order to provide dentists with such tools, a robust and accurate identification of the necessary landmarks is required. However, poor image quality of lateral cephalograms like low contrast or noise make this task difficult. In this paper, an approach for automatic landmark localization is presented and used to find 19 landmarks in lateral cephalometric images. An initial predicting of the individual landmark locations is done by using a 2-D coupled shape model to utilize the spatial relation between landmarks and other anatomical structures. These predictions are refined with a Hough Forest to determine the final landmark location. The approach achieves competitive performance with a successful detection rate of 70.24% on 250 images for the clinically relevant 2mm accuracy range.

Freie Schlagworte: Dental imaging, Object detection, Random forests, Medical image processing
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 02 Dez 2020 12:21
Letzte Änderung: 02 Dez 2020 12:21
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen