TU Darmstadt / ULB / TUbiblio

A System for Fast and Scalable Point Cloud Indexing Using Task Parallelism

Bormann, Pascal ; Krämer, Michel (2020)
A System for Fast and Scalable Point Cloud Indexing Using Task Parallelism.
Smart Tools and Applications in computer Graphics - Eurographics Italian Chapter Conference 2020 (STAG). virtual Conference (12.11.2020-13.11.2020)
doi: 10.2312/stag.20201250
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We introduce a system for fast, scalable indexing of arbitrarily sized point clouds based on a task-parallel computation model.Points are sorted using Morton indices in order to efficiently distribute sets of related points onto multiple concurrent indexingtasks. To achieve a high degree of parallelism, a hybrid top-down, bottom-up processing strategy is used. Our system achievesa 2.3x to 9x speedup over existing point cloud indexing systems while retaining comparable visual quality of the resultingacceleration structures. It is also fully compatible with widely used data formats in the context of web-based point cloud visualization. We demonstrate the effectiveness of our system in two experiments, evaluating scalability and general performancewhile processing datasets of up to 52.5 billion points.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Bormann, Pascal ; Krämer, Michel
Art des Eintrags: Bibliographie
Titel: A System for Fast and Scalable Point Cloud Indexing Using Task Parallelism
Sprache: Englisch
Publikationsjahr: 2020
Verlag: The Eurographics Association
Veranstaltungstitel: Smart Tools and Applications in computer Graphics - Eurographics Italian Chapter Conference 2020 (STAG)
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 12.11.2020-13.11.2020
DOI: 10.2312/stag.20201250
Zugehörige Links:
Kurzbeschreibung (Abstract):

We introduce a system for fast, scalable indexing of arbitrarily sized point clouds based on a task-parallel computation model.Points are sorted using Morton indices in order to efficiently distribute sets of related points onto multiple concurrent indexingtasks. To achieve a high degree of parallelism, a hybrid top-down, bottom-up processing strategy is used. Our system achievesa 2.3x to 9x speedup over existing point cloud indexing systems while retaining comparable visual quality of the resultingacceleration structures. It is also fully compatible with widely used data formats in the context of web-based point cloud visualization. We demonstrate the effectiveness of our system in two experiments, evaluating scalability and general performancewhile processing datasets of up to 52.5 billion points.

Freie Schlagworte: Point clouds, Acceleration structures, Parallel algorithms, Spatial data
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 02 Dez 2020 12:10
Letzte Änderung: 02 Dez 2020 12:10
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen