TU Darmstadt / ULB / TUbiblio

Wetting, evaporation and deposition processes in interaction of complex liquid formulations with porous substrates

Kumar, Abhijeet (2020)
Wetting, evaporation and deposition processes in interaction of complex liquid formulations with porous substrates.
Technische Universität Darmstadt
doi: 10.25534/tuprints-00014211
Dissertation, Erstveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

Complex liquid formulations are typically mixtures containing a bulk liquid phase (water or other solvents) and a dispersed phase, which is usually the phase which typically carries the active ingredient. Common examples are particle suspensions, emulsions, and dispersions of surfactants & lipid assemblies such as micelles, vesicles etc. In everyday applications such as fabric and hair conditioning, and in industrial applications such as surface modification of paper and textile, the end goal is to deposit active ingredients onto substrate surfaces. The deposition of active ingredients produces the desired surface modification effect i.e. softening, conditioning, hydrophobicity etc. Therefore, a good understanding of the liquid formulation-substrate interaction is of great significance.

Although the interaction of complex liquid formulations with well-defined flat solid surfaces has been investigated in earlier works, very few works have considered substrates which are closer to real-life substrates such as textiles, paper and hair. A common feature of these real-life substrates is that they are porous in nature, and the porous structure of these substrates significantly influences their interaction with the complex liquid formulation. This PhD thesis aims to investigate the processes involved in the interaction of complex liquids with porous substrates. Dispersions of cationic vesicles are used as model complex liquid for the experiments.

In the first part of the thesis, we consider the formulation-substrate interaction under fully immersed conditions wherein attractive electrostatic forces drive the deposition of cationic actives on anionic substrate surfaces. Single cellulose fibers and porous cotton yarns are used as deposition substrates. Experiments with single cellulose fibers are aimed at understanding the fundamental mechanism of vesicle deposition on cellulose surfaces. In the case of porous cotton yarns, the investigation focuses on the distribution of deposited vesicles across the porous substrate. The investigations reveal that the cationic vesicles deposit on cellulose fiber surfaces as intact entities in contrast to the more usual case in which the deposited vesicles disintegrate forming supported lipid bilayers. The surface roughness of cellulose fibers and the lipid bilayer phase behavior was found to significantly affect the deposition process. In the case of porous cotton yarns, the lipid bilayer phase behavior was found to significantly influence the location of vesicle deposition. Additionally, the bulk electrical conductivity also influences the distribution of deposited vesicles.

The later part of the thesis focuses on the spray-application of complex liquid formulations which is of great significance to industrial applications. Cellulose fiber filter papers are used as substrates for the experiments. We investigate the interaction of vesicle dispersion droplets with these porous substrates which involves, (i) wetting of the porous substrate by the droplets, and (ii) evaporation of the bulk liquid from the wetted area and subsequent stain formation. The wetting of porous substrates by vesicle dispersion droplets involves simultaneous spreading of the droplet over the porous substrate and imbibition of the liquid into substrate pores. In the final stains left on the porous substrate, deposition is observed to be localized close to the periphery of the wetted spot. It is similar to the typical “coffee ring effect” obtained when colloidal droplets evaporate on flat solid surfaces. Using the experimental results, the mechanism of formation of the coffee ring effect on porous substrates is explained. Furthermore, the factors which influence the droplet evaporation process and the resultant coffee ring stain are identified.

The results of this PhD thesis are expected to be helpful in devising approaches for achieving improved performance in several applications involving complex liquid-porous substrate interactions such as fabric softening, hair conditioning, and industrial surface treatment of paper, textiles etc. The results are also significant for other applications such as transdermal drug delivery, dried spot sampling of blood and other biological samples.

Typ des Eintrags: Dissertation
Erschienen: 2020
Autor(en): Kumar, Abhijeet
Art des Eintrags: Erstveröffentlichung
Titel: Wetting, evaporation and deposition processes in interaction of complex liquid formulations with porous substrates
Sprache: Englisch
Referenten: Gambaryan-Roisman, Apl. Prof. Tatiana ; Stephan, Prof. Dr. Peter ; von Klitzing, Prof. Dr. Regina
Publikationsjahr: 25 Oktober 2020
Ort: Darmstadt
Datum der mündlichen Prüfung: 21 Januar 2020
DOI: 10.25534/tuprints-00014211
URL / URN: https://tuprints.ulb.tu-darmstadt.de/14211
Kurzbeschreibung (Abstract):

Complex liquid formulations are typically mixtures containing a bulk liquid phase (water or other solvents) and a dispersed phase, which is usually the phase which typically carries the active ingredient. Common examples are particle suspensions, emulsions, and dispersions of surfactants & lipid assemblies such as micelles, vesicles etc. In everyday applications such as fabric and hair conditioning, and in industrial applications such as surface modification of paper and textile, the end goal is to deposit active ingredients onto substrate surfaces. The deposition of active ingredients produces the desired surface modification effect i.e. softening, conditioning, hydrophobicity etc. Therefore, a good understanding of the liquid formulation-substrate interaction is of great significance.

Although the interaction of complex liquid formulations with well-defined flat solid surfaces has been investigated in earlier works, very few works have considered substrates which are closer to real-life substrates such as textiles, paper and hair. A common feature of these real-life substrates is that they are porous in nature, and the porous structure of these substrates significantly influences their interaction with the complex liquid formulation. This PhD thesis aims to investigate the processes involved in the interaction of complex liquids with porous substrates. Dispersions of cationic vesicles are used as model complex liquid for the experiments.

In the first part of the thesis, we consider the formulation-substrate interaction under fully immersed conditions wherein attractive electrostatic forces drive the deposition of cationic actives on anionic substrate surfaces. Single cellulose fibers and porous cotton yarns are used as deposition substrates. Experiments with single cellulose fibers are aimed at understanding the fundamental mechanism of vesicle deposition on cellulose surfaces. In the case of porous cotton yarns, the investigation focuses on the distribution of deposited vesicles across the porous substrate. The investigations reveal that the cationic vesicles deposit on cellulose fiber surfaces as intact entities in contrast to the more usual case in which the deposited vesicles disintegrate forming supported lipid bilayers. The surface roughness of cellulose fibers and the lipid bilayer phase behavior was found to significantly affect the deposition process. In the case of porous cotton yarns, the lipid bilayer phase behavior was found to significantly influence the location of vesicle deposition. Additionally, the bulk electrical conductivity also influences the distribution of deposited vesicles.

The later part of the thesis focuses on the spray-application of complex liquid formulations which is of great significance to industrial applications. Cellulose fiber filter papers are used as substrates for the experiments. We investigate the interaction of vesicle dispersion droplets with these porous substrates which involves, (i) wetting of the porous substrate by the droplets, and (ii) evaporation of the bulk liquid from the wetted area and subsequent stain formation. The wetting of porous substrates by vesicle dispersion droplets involves simultaneous spreading of the droplet over the porous substrate and imbibition of the liquid into substrate pores. In the final stains left on the porous substrate, deposition is observed to be localized close to the periphery of the wetted spot. It is similar to the typical “coffee ring effect” obtained when colloidal droplets evaporate on flat solid surfaces. Using the experimental results, the mechanism of formation of the coffee ring effect on porous substrates is explained. Furthermore, the factors which influence the droplet evaporation process and the resultant coffee ring stain are identified.

The results of this PhD thesis are expected to be helpful in devising approaches for achieving improved performance in several applications involving complex liquid-porous substrate interactions such as fabric softening, hair conditioning, and industrial surface treatment of paper, textiles etc. The results are also significant for other applications such as transdermal drug delivery, dried spot sampling of blood and other biological samples.

Alternatives oder übersetztes Abstract:
Alternatives AbstractSprache

Komplexe flüssige Formulierungen bestehen aus einer Bulkflüssigkeit und einer dispergierten Phase, die üblicherweise den Wirkstoff trägt. Beispiele von komplexen Flüssigkeiten sind Partikelsuspensionen, Emulsionen, Dispersionen von Tensid- und Lipidanordnungen wie Vesikeln, Mizellen etc. Das gewünschte Ziel von diesen Formulierungen in Anwendungen wie Gewebe-, Haarkonditionierung und in industriellen Anwendungen wie Oberflächenmodifizierung von Papier und Textilien ist die Ablagerung von Wirkstoffen auf Substratoberflächen. Die Ablagerung von Wirkstoffen führt zu der gewünschten Oberflächenmodifizierung bzw. Erweichung, Konditionierung oder Hydrophobierung. Daher ist ein gutes Verständnis der Formulierung-Substrat-Wechselwirkung von großer Bedeutung.

In vorherigen Arbeiten ist die Wechselwirkung von komplexen flüssigen Formulierungen vorwiegend mit glatten festen Substraten untersucht worden. Nur manche Arbeiten haben solche Substrate betrachtet, deren Eigenschaften realen Substraten wie Textilien, Papier und Haare entsprechen. Eine gemeinsame Eigenschaft von diesen realen Substraten ist, dass sie eine poröse Struktur haben, welche die Wechselwirkung mit der komplexen Flüssigkeit stark beeinflussen kann. Das Ziel von dieser Dissertation ist die Wechselwirkung von komplexen Formulierungen mit porösen Substraten zu untersuchen. Für die experimentelle Untersuchungen werden Dispersionen aus kationischen Lipidvesikeln als Modellflüssigkeit verwendet.

In dem ersten Teil der Dissertation wird die Wechselwirkung unter direkten Kontakt beim Eintauchen des Substrats in der komplexen flüssigen Formulierung untersucht wobei die attraktiven elektrostatischen Kräfte die Ablagerung von kationischen Wirkstoffe auf anionischen Substratoberflächen antreiben. Einzelne Cellulosefasern und porösen Baumwollgarne werden als Substrat verwendet. Die Untersuchungen ergeben, dass die kationische Vesikeln sich intakt auf Cellulosefaser Oberflächen adsorbieren. Es wird festgestellt, dass die Oberflächenrauheit von Cellulosefasern und die Vesikel-Lipiddoppelschichtphase einen signifikanten Einfluss auf dem Ablagerungsprozess haben. Bei porösen Baumwollgarnen wird es festgestellt, dass die Vesikel-Lipiddoppelschichtphase und die elektrische Leitfähigkeit der Bulkflüssigkeit die Verteilung von abgelagerten Vesikeln signifikant beeinflussen.

Das zweite Teil der Arbeit konzentriert sich auf die Wechselwirkung zwischen Tropfen von komplexen flüssigen Formulierungen und porösen Substraten. Für die Experimente werden Cellulosefaser-Filterpapiere als Substrat eingesetzt. Wir untersuchen die Wechselwirkung von Vesikel-Dispersionstropfen mit porösen Substraten, wobei (i) das poröse Substrat benetzt wird, und (ii) die Verdunstung der Bulkflüssigkeit aus dem benetzten Bereich zu einer Fleckenbildung führt. Der Benetzungsprozess beinhaltet die Tropfenausbreitung auf dem porösen Substrat und die Imbibition der Flüssigkeit in die Substratporen. Bei den Flecken, die auf dem porösen Substrat zurückbleiben, ist zu beobachten, dass die Ablagerung am Rand des benetzten Bereiches konzentriert ist. Das ist vergleichbar zu dem typischen "Kaffeering-Effekt" von kolloidalen Tropfen auf ebenen festen Oberflächen. Anhand der experimentellen Daten wird der Mechanismus der Bildung des Kaffeeringeffekts auf porösen Substraten erläutert. Darüber hinaus sind die Faktoren, die den Verdunstungsprozess und den resultierenden Kaffeeringflecken beeinflussen, identifiziert.

Die Ergebnisse von dieser Dissertation sollen bei der Erzielung einer verbesserten Leistung in mehreren Anwendungen, die komplexe Wechselwirkungen zwischen Flüssigkeit und poröse Substrat beinhalten, hilfreich sein. Die Erkenntnisse der Arbeit sind auch für andere Anwendungen wie transdermale Arzneimittelabgabe und Trockenpunktentnahme von Blut von großer Bedeutung.

Deutsch
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-142114
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Technische Thermodynamik (TTD)
16 Fachbereich Maschinenbau > Fachgebiet für Technische Thermodynamik (TTD) > Grenzflächentransport & komplexe Benetzung
Hinterlegungsdatum: 19 Nov 2020 09:32
Letzte Änderung: 24 Nov 2020 06:24
PPN:
Referenten: Gambaryan-Roisman, Apl. Prof. Tatiana ; Stephan, Prof. Dr. Peter ; von Klitzing, Prof. Dr. Regina
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: 21 Januar 2020
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen