TU Darmstadt / ULB / TUbiblio

High-temperature stability and oxidation behavior of SiOC/HfO2 ceramic nanocomposite in air

Sun, Jia ; Li, Tao ; Reitz, Andreas ; Fu, Qiangang ; Riedel, Ralf ; Yu, Zhaoju (2020)
High-temperature stability and oxidation behavior of SiOC/HfO2 ceramic nanocomposite in air.
In: Corrosion Science, 175
doi: 10.1016/j.corsci.2020.108866
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

High temperature stability (1100 -1500 degrees C) and oxidation behavior at 1500 degrees C of the SiOC/HfO2 ceramic nanocomposite were investigated in air. Consumption of free carbon dominated thermal stabilities of the bulk at below 1200 degrees C. Whereas, the continuous cristobalite scale, rather than HfSiO4, was responsible for the improved oxidation resistance at exceeding 1200 degrees C. At 1500 degrees C, HfSiO4, with maximum 30 vol. % concentration for duration of similar to 15 h, suffered ruptured spherical-bubbles by volatilized species and did not consolidate into a completely protective scale. Thus, the bulk exhibited limited resistance to oxidation at 1500 degrees C for long-term applications.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Sun, Jia ; Li, Tao ; Reitz, Andreas ; Fu, Qiangang ; Riedel, Ralf ; Yu, Zhaoju
Art des Eintrags: Bibliographie
Titel: High-temperature stability and oxidation behavior of SiOC/HfO2 ceramic nanocomposite in air
Sprache: Englisch
Publikationsjahr: Oktober 2020
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Corrosion Science
Jahrgang/Volume einer Zeitschrift: 175
DOI: 10.1016/j.corsci.2020.108866
URL / URN: https://doi.org/10.1016/j.corsci.2020.108866
Zugehörige Links:
Kurzbeschreibung (Abstract):

High temperature stability (1100 -1500 degrees C) and oxidation behavior at 1500 degrees C of the SiOC/HfO2 ceramic nanocomposite were investigated in air. Consumption of free carbon dominated thermal stabilities of the bulk at below 1200 degrees C. Whereas, the continuous cristobalite scale, rather than HfSiO4, was responsible for the improved oxidation resistance at exceeding 1200 degrees C. At 1500 degrees C, HfSiO4, with maximum 30 vol. % concentration for duration of similar to 15 h, suffered ruptured spherical-bubbles by volatilized species and did not consolidate into a completely protective scale. Thus, the bulk exhibited limited resistance to oxidation at 1500 degrees C for long-term applications.

Freie Schlagworte: Single source precursor; Spark plasma sintering; Ceramic nanocomposite; Thermal stability; Oxidation resistance MICROSTRUCTURE EVOLUTION; SILICON-NITRIDE; RAMAN; DECOMPOSITION; RESISTANCE; CORROSION; GLASSES; PHASE
Zusätzliche Informationen:

Shaanxi Provincial Education Department of China, Grant Number 2020JQ-170 2020TD-003, Fundamental Research Funds for the Central Universities, Grant Number G2019KY05116, Fund of Key Laboratory of National Defense Science and Technology in Northwestern Polytechnical University (NPU), Grant Number JZX7Y201911SY008901 6142911190207, National Natural Science Foundation of China (NSFC), Grant Number 51821091 51872246, NPU-TU Darmstadt Joint International Research Laboratory of Ultrahigh Ceramic Matrix Composites (JIRL), Key Laboratory of High Performance Ceramic Fibers of Ministry of Education (Xiamen University)

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie
Hinterlegungsdatum: 18 Nov 2020 06:24
Letzte Änderung: 18 Nov 2020 06:24
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen