Nasir, Saima ; Ali, Mubarak ; Ahmed, Ishtiaq ; Niemeyer, Christof M. ; Ensinger, Wolfgang (2020)
Phosphoprotein Detection with a Single Nanofluidic Diode Decorated with Zinc Chelates.
In: ChemPlusChem, 85 (3)
doi: 10.1002/cplu.202000045
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
We report a nanofluidic device for the label-free detection of phosphoprotein (PPn) analytes. To achieve this goal, a metal ion chelator, namely 4-[bis(2-pyridylmethyl)aminomethyl]aniline (DPA-NH2) compound was synthesized. Single asymmetric nanofluidic channels were fabricated in polyethylene terephthalate (PET) membranes. The chelator (DPA-NH2) molecules are subsequently immobilized on the nanochannel surface, followed by the zinc ion complexation to afford DPA-Zn2+ chelates, which act as ligand moieties for the specific binding of phosphoproteins. The success of the chemical reaction and biomolecular recognition process that occur in a confined geometry can be monitored from the changes in electrical readout of the nanochannel. The nanofluidic sensor has the ability to sensitively and specifically detect lower concentrations (>= 1 nM) of phosphoprotein (albumin and alpha-casein) in the surrounding environment as evidenced from the significant decrease in ion current flowing through the nanochannels. However, dephosphoproteins such as lysozyme and dephospho-alpha-casein even at higher concentration (>1 mu M) could not induce any significant change in the transmembrane ion flux. This observation indicated the sensitivity and specificity of the proposed nanofluidic sensor towards PPn proteins, and has potential for use in differentiating between phosphoproteins and dephosphoproteins.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2020 |
Autor(en): | Nasir, Saima ; Ali, Mubarak ; Ahmed, Ishtiaq ; Niemeyer, Christof M. ; Ensinger, Wolfgang |
Art des Eintrags: | Bibliographie |
Titel: | Phosphoprotein Detection with a Single Nanofluidic Diode Decorated with Zinc Chelates |
Sprache: | Englisch |
Publikationsjahr: | März 2020 |
Verlag: | Wiley-VCH |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | ChemPlusChem |
Jahrgang/Volume einer Zeitschrift: | 85 |
(Heft-)Nummer: | 3 |
DOI: | 10.1002/cplu.202000045 |
URL / URN: | https://doi.org/10.1002/cplu.202000045 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | We report a nanofluidic device for the label-free detection of phosphoprotein (PPn) analytes. To achieve this goal, a metal ion chelator, namely 4-[bis(2-pyridylmethyl)aminomethyl]aniline (DPA-NH2) compound was synthesized. Single asymmetric nanofluidic channels were fabricated in polyethylene terephthalate (PET) membranes. The chelator (DPA-NH2) molecules are subsequently immobilized on the nanochannel surface, followed by the zinc ion complexation to afford DPA-Zn2+ chelates, which act as ligand moieties for the specific binding of phosphoproteins. The success of the chemical reaction and biomolecular recognition process that occur in a confined geometry can be monitored from the changes in electrical readout of the nanochannel. The nanofluidic sensor has the ability to sensitively and specifically detect lower concentrations (>= 1 nM) of phosphoprotein (albumin and alpha-casein) in the surrounding environment as evidenced from the significant decrease in ion current flowing through the nanochannels. However, dephosphoproteins such as lysozyme and dephospho-alpha-casein even at higher concentration (>1 mu M) could not induce any significant change in the transmembrane ion flux. This observation indicated the sensitivity and specificity of the proposed nanofluidic sensor towards PPn proteins, and has potential for use in differentiating between phosphoproteins and dephosphoproteins. |
Freie Schlagworte: | iomolecules, ion current rectification, ligand-receptor interactions, sensors, synthetic nanochannels |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialanalytik |
Hinterlegungsdatum: | 16 Nov 2020 06:21 |
Letzte Änderung: | 03 Jul 2024 02:48 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Phosphoprotein Detection with a Single Nanofluidic Diode Decorated with Zinc Chelates. (deposited 05 Apr 2020 19:57)
- Phosphoprotein Detection with a Single Nanofluidic Diode Decorated with Zinc Chelates. (deposited 16 Nov 2020 06:21) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |