TU Darmstadt / ULB / TUbiblio

Quasi-best approximation in optimization with PDE constraints

Gaspoz, F. ; Kreuzer, C. ; Veeser, A. ; Wollner, W. (2019)
Quasi-best approximation in optimization with PDE constraints.
In: Inverse Problems, 36 (1)
doi: 10.1088/1361-6420/ab47f3
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

We consider finite element solutions to quadratic optimization problems, where the state depends on the control via a well-posed linear partial differential equation. Exploiting the structure of a suitably reduced optimality system, we prove that the combined error in the state and adjoint state of the variational discretization is bounded by the best approximation error in the underlying discrete spaces. The constant in this bound depends on the inverse square root of the Tikhonov regularization parameter. Furthermore, if the operators of control action and observation are compact, this quasi-best approximation constant becomes independent of the Tikhonov parameter as the mesh size tends to 0 and we give quantitative relationships between mesh size and Tikhonov parameter ensuring this independence. We also derive generalizations of these results when the control variable is discretized or when it is taken from a convex set.

Typ des Eintrags: Artikel
Erschienen: 2019
Autor(en): Gaspoz, F. ; Kreuzer, C. ; Veeser, A. ; Wollner, W.
Art des Eintrags: Bibliographie
Titel: Quasi-best approximation in optimization with PDE constraints
Sprache: Englisch
Publikationsjahr: 19 Dezember 2019
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Inverse Problems
Jahrgang/Volume einer Zeitschrift: 36
(Heft-)Nummer: 1
DOI: 10.1088/1361-6420/ab47f3
Zugehörige Links:
Kurzbeschreibung (Abstract):

We consider finite element solutions to quadratic optimization problems, where the state depends on the control via a well-posed linear partial differential equation. Exploiting the structure of a suitably reduced optimality system, we prove that the combined error in the state and adjoint state of the variational discretization is bounded by the best approximation error in the underlying discrete spaces. The constant in this bound depends on the inverse square root of the Tikhonov regularization parameter. Furthermore, if the operators of control action and observation are compact, this quasi-best approximation constant becomes independent of the Tikhonov parameter as the mesh size tends to 0 and we give quantitative relationships between mesh size and Tikhonov parameter ensuring this independence. We also derive generalizations of these results when the control variable is discretized or when it is taken from a convex set.

Zusätzliche Informationen:

Special Issue on Optimal Control and Inverse Problems; Erstveröffentlichung

Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Optimierung
Hinterlegungsdatum: 12 Nov 2020 13:38
Letzte Änderung: 03 Jul 2024 02:48
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen