TU Darmstadt / ULB / TUbiblio

Modeling Memory Faults in Signature and Authenticated Encryption Schemes

Fischlin, Marc ; Günther, Felix
Hrsg.: Jarecki, Stanislaw (2020)
Modeling Memory Faults in Signature and Authenticated Encryption Schemes.
2020 RSA Conference Cryptographer’s Track (CT-RSA 2020). San Francisco, USA (24.-28.02.2020)
doi: 10.1007/978-3-030-40186-3_4
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Memory fault attacks, inducing errors in computations, have been an ever-evolving threat to cryptographic schemes since their discovery for cryptography by Boneh et al. (Eurocrypt 1997). Initially requiring physical tampering with hardware, the software-based rowhammer attack put forward by Kim et al. (ISCA 2014) enabled fault attacks also through malicious software running on the same host machine. This led to concerning novel attack vectors, for example on deterministic signature schemes, whose approach to avoid dependency on (good) randomness renders them vulnerable to fault attacks. This has been demonstrated in realistic adversarial settings in a series of recent works. However, a unified formalism of different memory fault attacks, enabling also to argue the security of countermeasures, is missing yet.

In this work, we suggest a generic extension for existing security models that enables a game-based treatment of cryptographic fault resilience. Our modeling specifies exemplary memory fault attack types of different strength, ranging from random bit-flip faults to differential (rowhammer-style) faults to full adversarial control on indicated memory variables. We apply our model first to deterministic signatures to revisit known fault attacks as well as to establish provable guarantees of fault resilience for proposed fault-attack countermeasures. In a second application to nonce-misuse resistant authenticated encryption, we provide the first fault-attack treatment of the SIV mode of operation and give a provably secure fault-resilient variant.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Herausgeber: Jarecki, Stanislaw
Autor(en): Fischlin, Marc ; Günther, Felix
Art des Eintrags: Bibliographie
Titel: Modeling Memory Faults in Signature and Authenticated Encryption Schemes
Sprache: Englisch
Publikationsjahr: 14 Februar 2020
Verlag: Springer
Buchtitel: Topics in Cryptology - CT-RSA 2020: The Cryptographers' Track at the RSA Conference 2020
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 12006
Veranstaltungstitel: 2020 RSA Conference Cryptographer’s Track (CT-RSA 2020)
Veranstaltungsort: San Francisco, USA
Veranstaltungsdatum: 24.-28.02.2020
DOI: 10.1007/978-3-030-40186-3_4
Kurzbeschreibung (Abstract):

Memory fault attacks, inducing errors in computations, have been an ever-evolving threat to cryptographic schemes since their discovery for cryptography by Boneh et al. (Eurocrypt 1997). Initially requiring physical tampering with hardware, the software-based rowhammer attack put forward by Kim et al. (ISCA 2014) enabled fault attacks also through malicious software running on the same host machine. This led to concerning novel attack vectors, for example on deterministic signature schemes, whose approach to avoid dependency on (good) randomness renders them vulnerable to fault attacks. This has been demonstrated in realistic adversarial settings in a series of recent works. However, a unified formalism of different memory fault attacks, enabling also to argue the security of countermeasures, is missing yet.

In this work, we suggest a generic extension for existing security models that enables a game-based treatment of cryptographic fault resilience. Our modeling specifies exemplary memory fault attack types of different strength, ranging from random bit-flip faults to differential (rowhammer-style) faults to full adversarial control on indicated memory variables. We apply our model first to deterministic signatures to revisit known fault attacks as well as to establish provable guarantees of fault resilience for proposed fault-attack countermeasures. In a second application to nonce-misuse resistant authenticated encryption, we provide the first fault-attack treatment of the SIV mode of operation and give a provably secure fault-resilient variant.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Kryptographie und Komplexitätstheorie
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
Forschungsfelder
Forschungsfelder > Information and Intelligence
Forschungsfelder > Information and Intelligence > Cybersecurity & Privacy
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1119: CROSSING – Kryptographiebasierte Sicherheitslösungen als Grundlage für Vertrauen in heutigen und zukünftigen IT-Systemen
Hinterlegungsdatum: 11 Apr 2024 11:41
Letzte Änderung: 11 Apr 2024 11:41
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen