TU Darmstadt / ULB / TUbiblio

Solitary states in the mean-field limit

Kruk, N. ; Maistrenko, Y. ; Koeppl, H. (2020)
Solitary states in the mean-field limit.
In: Chaos: An Interdisciplinary Journal of Nonlinear Science, 30 (11)
doi: 10.1063/5.0029585
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

We study active matter systems where the orientational dynamics of underlying self-propelled particles obey second order equations. By primarily concentrating on a spatially homogeneous setup for particle distribution, our analysis combines theories of active matter and oscillatory networks. For such systems, we analyze the appearance of solitary states via a homoclinic bifurcation as a mechanism of the frequency clustering. By introducing noise, we establish a stochastic version of solitary states and derive the mean-field limit described by a partial differential equation for a one-particle probability density function, which one might call the continuum Kuramoto model with inertia and noise. By studying this limit, we establish second order phase transitions between polar order and disorder. The combination of both analytical and numerical approaches in our study demonstrates an excellent qualitative agreement between mean-field and finite size models.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Kruk, N. ; Maistrenko, Y. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Solitary states in the mean-field limit
Sprache: Englisch
Publikationsjahr: 20 November 2020
Verlag: American Institute of Physics
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Chaos: An Interdisciplinary Journal of Nonlinear Science
Jahrgang/Volume einer Zeitschrift: 30
(Heft-)Nummer: 11
DOI: 10.1063/5.0029585
Zugehörige Links:
Kurzbeschreibung (Abstract):

We study active matter systems where the orientational dynamics of underlying self-propelled particles obey second order equations. By primarily concentrating on a spatially homogeneous setup for particle distribution, our analysis combines theories of active matter and oscillatory networks. For such systems, we analyze the appearance of solitary states via a homoclinic bifurcation as a mechanism of the frequency clustering. By introducing noise, we establish a stochastic version of solitary states and derive the mean-field limit described by a partial differential equation for a one-particle probability density function, which one might call the continuum Kuramoto model with inertia and noise. By studying this limit, we establish second order phase transitions between polar order and disorder. The combination of both analytical and numerical approaches in our study demonstrates an excellent qualitative agreement between mean-field and finite size models.

Zusätzliche Informationen:

Art. 111104 ; Erstveröffentlichung

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 09 Nov 2020 12:16
Letzte Änderung: 03 Jul 2024 02:48
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen