Kruk, N. ; Maistrenko, Y. ; Koeppl, H. (2020)
Solitary states in the mean-field limit.
In: Chaos: An Interdisciplinary Journal of Nonlinear Science, 30 (11)
doi: 10.1063/5.0029585
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
We study active matter systems where the orientational dynamics of underlying self-propelled particles obey second order equations. By primarily concentrating on a spatially homogeneous setup for particle distribution, our analysis combines theories of active matter and oscillatory networks. For such systems, we analyze the appearance of solitary states via a homoclinic bifurcation as a mechanism of the frequency clustering. By introducing noise, we establish a stochastic version of solitary states and derive the mean-field limit described by a partial differential equation for a one-particle probability density function, which one might call the continuum Kuramoto model with inertia and noise. By studying this limit, we establish second order phase transitions between polar order and disorder. The combination of both analytical and numerical approaches in our study demonstrates an excellent qualitative agreement between mean-field and finite size models.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2020 |
Autor(en): | Kruk, N. ; Maistrenko, Y. ; Koeppl, H. |
Art des Eintrags: | Bibliographie |
Titel: | Solitary states in the mean-field limit |
Sprache: | Englisch |
Publikationsjahr: | 20 November 2020 |
Verlag: | American Institute of Physics |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Chaos: An Interdisciplinary Journal of Nonlinear Science |
Jahrgang/Volume einer Zeitschrift: | 30 |
(Heft-)Nummer: | 11 |
DOI: | 10.1063/5.0029585 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | We study active matter systems where the orientational dynamics of underlying self-propelled particles obey second order equations. By primarily concentrating on a spatially homogeneous setup for particle distribution, our analysis combines theories of active matter and oscillatory networks. For such systems, we analyze the appearance of solitary states via a homoclinic bifurcation as a mechanism of the frequency clustering. By introducing noise, we establish a stochastic version of solitary states and derive the mean-field limit described by a partial differential equation for a one-particle probability density function, which one might call the continuum Kuramoto model with inertia and noise. By studying this limit, we establish second order phase transitions between polar order and disorder. The combination of both analytical and numerical approaches in our study demonstrates an excellent qualitative agreement between mean-field and finite size models. |
Zusätzliche Informationen: | Art. 111104 ; Erstveröffentlichung |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik |
Hinterlegungsdatum: | 09 Nov 2020 12:16 |
Letzte Änderung: | 03 Jul 2024 02:48 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Solitary states in the mean-field limit. (deposited 20 Jul 2022 13:56)
- Solitary states in the mean-field limit. (deposited 09 Nov 2020 12:16) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |