TU Darmstadt / ULB / TUbiblio

Attention-Based Transformers for Instance Segmentation of Cells in Microstructures

Prangemeier, Tim ; Reich, C. ; Koeppl, H. (2020)
Attention-Based Transformers for Instance Segmentation of Cells in Microstructures.
IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM 2020). virtual Conference (16.12.2020-19.12.2020)
doi: 10.1109/BIBM49941.2020.9313305
Konferenzveröffentlichung, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Detecting and segmenting object instances is acommon task in biomedical applications. Examples range from detecting lesions on functional magnetic resonance images, to the detection of tumours in histopathological images and extracting quantitative single-cell information from microscopy imagery, where cell segmentation is a major bottleneck. Attention-basedtransformers are state-of-the-art in a range of deep learningfields. They have recently been proposed for segmentation taskswhere they are beginning to outperforming other methods. We present a novel attention-basedcell detection transformer(Cell-DETR) for direct end-to-end instance segmentation. While the segmentation performance is on par with a state-of-the-artinstance segmentation method, Cell-DETR is simpler and faster.We showcase the method’s contribution in a the typical use caseof segmenting yeast in microstructured environments, commonly employed in systems or synthetic biology. For the specific usecase, the proposed method surpasses the state-of-the-art tools forsemantic segmentation and additionally predicts the individual object instances. The fast and accurate instance segmentation performance increases the experimental information yield for a posterioridata processing and makes online monitoring of experiments and closed-loop optimal experimental design feasible.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Prangemeier, Tim ; Reich, C. ; Koeppl, H.
Art des Eintrags: Bibliographie
Titel: Attention-Based Transformers for Instance Segmentation of Cells in Microstructures
Sprache: Englisch
Publikationsjahr: 19 Dezember 2020
Verlag: IEEE
Buchtitel: Proceedings: 2020 IEEE International Conference on Bioinformatics and Biomedicine
Veranstaltungstitel: IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM 2020)
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 16.12.2020-19.12.2020
DOI: 10.1109/BIBM49941.2020.9313305
Zugehörige Links:
Kurzbeschreibung (Abstract):

Detecting and segmenting object instances is acommon task in biomedical applications. Examples range from detecting lesions on functional magnetic resonance images, to the detection of tumours in histopathological images and extracting quantitative single-cell information from microscopy imagery, where cell segmentation is a major bottleneck. Attention-basedtransformers are state-of-the-art in a range of deep learningfields. They have recently been proposed for segmentation taskswhere they are beginning to outperforming other methods. We present a novel attention-basedcell detection transformer(Cell-DETR) for direct end-to-end instance segmentation. While the segmentation performance is on par with a state-of-the-artinstance segmentation method, Cell-DETR is simpler and faster.We showcase the method’s contribution in a the typical use caseof segmenting yeast in microstructured environments, commonly employed in systems or synthetic biology. For the specific usecase, the proposed method surpasses the state-of-the-art tools forsemantic segmentation and additionally predicts the individual object instances. The fast and accurate instance segmentation performance increases the experimental information yield for a posterioridata processing and makes online monitoring of experiments and closed-loop optimal experimental design feasible.

Zusätzliche Informationen:

Erstveröffentlichung

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
Hinterlegungsdatum: 05 Nov 2020 12:56
Letzte Änderung: 03 Jul 2024 02:48
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen