TU Darmstadt / ULB / TUbiblio

23Na NMR Spectroscopic Quantification of the Antiferroelectric− Ferroelectric Phase Coexistence in Sodium Niobate

Egert, Sonja ; Zhang, Mao-Hua ; Koruza, Jurij ; Groszewicz, Pedro B. ; Buntkowsky, Gerd (2020)
23Na NMR Spectroscopic Quantification of the Antiferroelectric− Ferroelectric Phase Coexistence in Sodium Niobate.
In: Journal of Physical Chemistry B, 124 (43)
doi: 10.1021/acs.jpcc.0c07202
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

The irreversible field-induced phase transition between the antiferroelectric (P) and ferroelectric (Q) polymorphs of sodium niobate (NaNbO3) ceramics constitutes a focal point in improving the material’s energy storage properties. The coexistence of P and Q phases can be verified by X-ray and electron diffraction methods, but its extent remains elusive. Two-dimensional solid-state nuclear magnetic resonance (NMR) spectroscopy allows the quantification of relative amounts of the coexisting polymorphs, but the analysis of ceramic sample pieces requires a trade-off between sufficient sensitivity (at higher magnetic fields) and separation of the overlapping P and Q signals (at lower magnetic fields). In this contribution, we apply the satellite transition magic angle spinning (STMAS) pulse sequence in a quantitative analysis of the antiferroelectric−ferroelectric phase transition in NaNbO3 ceramics. Both field- and grain size-induced transitions are investigated and the coexistence of the Q and P phases after the application of an electric field is quantified to be approximately 50%:50%. No indication is found that the local structure of the field-induced Q polymorph differs fundamentally from that induced in small-sized grains. Furthermore, the sensitivity and resolution of STMAS is compared to previously reported applications of the triple quantum magic angle spinning (3QMAS) sequence to the NaNbO3 system.

Typ des Eintrags: Artikel
Erschienen: 2020
Autor(en): Egert, Sonja ; Zhang, Mao-Hua ; Koruza, Jurij ; Groszewicz, Pedro B. ; Buntkowsky, Gerd
Art des Eintrags: Bibliographie
Titel: 23Na NMR Spectroscopic Quantification of the Antiferroelectric− Ferroelectric Phase Coexistence in Sodium Niobate
Sprache: Englisch
Publikationsjahr: 29 September 2020
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Physical Chemistry B
Jahrgang/Volume einer Zeitschrift: 124
(Heft-)Nummer: 43
DOI: 10.1021/acs.jpcc.0c07202
Kurzbeschreibung (Abstract):

The irreversible field-induced phase transition between the antiferroelectric (P) and ferroelectric (Q) polymorphs of sodium niobate (NaNbO3) ceramics constitutes a focal point in improving the material’s energy storage properties. The coexistence of P and Q phases can be verified by X-ray and electron diffraction methods, but its extent remains elusive. Two-dimensional solid-state nuclear magnetic resonance (NMR) spectroscopy allows the quantification of relative amounts of the coexisting polymorphs, but the analysis of ceramic sample pieces requires a trade-off between sufficient sensitivity (at higher magnetic fields) and separation of the overlapping P and Q signals (at lower magnetic fields). In this contribution, we apply the satellite transition magic angle spinning (STMAS) pulse sequence in a quantitative analysis of the antiferroelectric−ferroelectric phase transition in NaNbO3 ceramics. Both field- and grain size-induced transitions are investigated and the coexistence of the Q and P phases after the application of an electric field is quantified to be approximately 50%:50%. No indication is found that the local structure of the field-induced Q polymorph differs fundamentally from that induced in small-sized grains. Furthermore, the sensitivity and resolution of STMAS is compared to previously reported applications of the triple quantum magic angle spinning (3QMAS) sequence to the NaNbO3 system.

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
LOEWE
LOEWE > LOEWE-Schwerpunkte
LOEWE > LOEWE-Schwerpunkte > FLAME - Fermi Level Engineering Antiferroelektrischer Materialien für Energiespeicher und Isolatoren
Hinterlegungsdatum: 03 Nov 2020 06:12
Letzte Änderung: 03 Nov 2020 06:12
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen