TU Darmstadt / ULB / TUbiblio

Data augmentation for time series: traditional vs generative models on capacitive proximity time series

Fu, Biying ; Kirchbuchner, Florian ; Kuijper, Arjan (2020)
Data augmentation for time series: traditional vs generative models on capacitive proximity time series.
13th ACM International Conference on PErvasive Technologies Related to Assistive Environments (PETRA'20). Corfu, Greece (30.06.2020-03.07.2020)
doi: 10.1145/3389189.3392606
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Large labeled quantities and diversities of training data are often needed for supervised, data-based modelling. Data distribution should cover a rich representation to support the generalizability of the trained end-to-end inference model. However, this is often hindered by limited labeled data and the expensive data collection process, especially for human activity recognition tasks. Extensive manual labeling is required. Data augmentation is thus a widely used regularization method for deep learning, especially applied on image data to increase the classification accuracy. But it is less researched for time series. In this paper, we investigate the data augmentation task on continuous capacitive time series with the example on exercise recognition. We show that the traditional data augmentation can enrich the source distribution and thus make the trained inference model more generalized. This further increases the recognition performance for unseen target data around 21.4 percentage points compared to inference model without data augmentation. The generative models such as variational autoencoder or conditional variational autoencoder can further reduce the variance on the target data.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2020
Autor(en): Fu, Biying ; Kirchbuchner, Florian ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: Data augmentation for time series: traditional vs generative models on capacitive proximity time series
Sprache: Englisch
Publikationsjahr: 2020
Ort: New York, NY, United States
Verlag: ACM
Buchtitel: PETRA '20: Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments
Veranstaltungstitel: 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments (PETRA'20)
Veranstaltungsort: Corfu, Greece
Veranstaltungsdatum: 30.06.2020-03.07.2020
DOI: 10.1145/3389189.3392606
Kurzbeschreibung (Abstract):

Large labeled quantities and diversities of training data are often needed for supervised, data-based modelling. Data distribution should cover a rich representation to support the generalizability of the trained end-to-end inference model. However, this is often hindered by limited labeled data and the expensive data collection process, especially for human activity recognition tasks. Extensive manual labeling is required. Data augmentation is thus a widely used regularization method for deep learning, especially applied on image data to increase the classification accuracy. But it is less researched for time series. In this paper, we investigate the data augmentation task on continuous capacitive time series with the example on exercise recognition. We show that the traditional data augmentation can enrich the source distribution and thus make the trained inference model more generalized. This further increases the recognition performance for unseen target data around 21.4 percentage points compared to inference model without data augmentation. The generative models such as variational autoencoder or conditional variational autoencoder can further reduce the variance on the target data.

Freie Schlagworte: Activity recognition, Ambient intelligence (AmI), Sensor data exploration
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 26 Okt 2020 12:16
Letzte Änderung: 05 Jul 2024 07:29
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen