Towsif Khan, Sami ; Chapa, Fernando ; Hack, Jochen (2020)
Highly Resolved Rainfall-Runoff Simulation of Retrofitted Green Stormwater Infrastructure at the Micro-Watershed Scale.
In: Land, 9 (9)
doi: 10.3390/land9090339
Artikel, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
Green Stormwater Infrastructure (GSI), a sustainable engineering design approach for managing urban stormwater runoff, has long been recommended as an alternative to conventional conveyance-based stormwater management strategies to mitigate the adverse impact of sprawling urbanization. Hydrological and hydraulic simulations of small-scale GSI measures in densely urbanized micro watersheds require high-resolution spatial databases of urban land use, stormwater structures, and topography. This study presents a highly resolved Storm Water Management Model developed under considerable spatial data constraints. It evaluates the cumulative effect of the implementation of dispersed, retrofitted, small-scale GSI measures in a heavily urbanized micro watershed of Costa Rica. Our methodology includes a high-resolution digital elevation model based on Google Earth information, the accuracy of which was sufficient to determine flow patterns and slopes, as well as to approximate the underground stormwater structures. The model produced satisfactory results in event-based calibration and validation, which ensured the reliability of the data collection procedure. Simulating the implementation of GSI shows that dispersed, retrofitted, small-scale measures could significantly reduce impermeable surface runoff (peak runoff reduction up to 40%) during frequent, less intense storm events and delay peak surface runoff by 5-10 min. The presented approach can benefit stormwater practitioners and modelers conducting small scale hydrological simulation under spatial data constraint.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2020 |
Autor(en): | Towsif Khan, Sami ; Chapa, Fernando ; Hack, Jochen |
Art des Eintrags: | Bibliographie |
Titel: | Highly Resolved Rainfall-Runoff Simulation of Retrofitted Green Stormwater Infrastructure at the Micro-Watershed Scale |
Sprache: | Englisch |
Publikationsjahr: | 22 September 2020 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Land |
Jahrgang/Volume einer Zeitschrift: | 9 |
(Heft-)Nummer: | 9 |
DOI: | 10.3390/land9090339 |
URL / URN: | https://www.mdpi.com/2073-445X/9/9/339 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Green Stormwater Infrastructure (GSI), a sustainable engineering design approach for managing urban stormwater runoff, has long been recommended as an alternative to conventional conveyance-based stormwater management strategies to mitigate the adverse impact of sprawling urbanization. Hydrological and hydraulic simulations of small-scale GSI measures in densely urbanized micro watersheds require high-resolution spatial databases of urban land use, stormwater structures, and topography. This study presents a highly resolved Storm Water Management Model developed under considerable spatial data constraints. It evaluates the cumulative effect of the implementation of dispersed, retrofitted, small-scale GSI measures in a heavily urbanized micro watershed of Costa Rica. Our methodology includes a high-resolution digital elevation model based on Google Earth information, the accuracy of which was sufficient to determine flow patterns and slopes, as well as to approximate the underground stormwater structures. The model produced satisfactory results in event-based calibration and validation, which ensured the reliability of the data collection procedure. Simulating the implementation of GSI shows that dispersed, retrofitted, small-scale measures could significantly reduce impermeable surface runoff (peak runoff reduction up to 40%) during frequent, less intense storm events and delay peak surface runoff by 5-10 min. The presented approach can benefit stormwater practitioners and modelers conducting small scale hydrological simulation under spatial data constraint. |
Freie Schlagworte: | Costa Rica,Green Infrastructure,SWMM,high resolution,neighborhood level,stormwater,urban flooding |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Ingenieurökologie |
Hinterlegungsdatum: | 29 Sep 2020 06:02 |
Letzte Änderung: | 03 Jul 2024 02:47 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Highly Resolved Rainfall-Runoff Simulation of Retrofitted Green Stormwater Infrastructure at the Micro-Watershed Scale. (deposited 16 Jul 2021 12:23)
- Highly Resolved Rainfall-Runoff Simulation of Retrofitted Green Stormwater Infrastructure at the Micro-Watershed Scale. (deposited 29 Sep 2020 06:02) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |