Eickmeyer, Kord (2020)
Logics with Invariantly Used Relations.
Universitäts- und Landesbibliothek Darmstadt, 2020
doi: 10.25534/tuprints-00013503
Habilitation, Zweitveröffentlichung
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
This thesis deals with various aspects of the finite model theory of logics with invariantly used relations. To construct such a logic we start with an arbitrary logic L, such as first-order or monadic second-order logic and enrich it by giving it the ability to speak about additional relations such as a linear order which is not actually defined on the structure in question, provided that its truth value be independent of which particular linear order we choose. We investigate how the expressive power of the resulting logics relates to that of the base logic L, and give efficient algorithms for model-checking.
Typ des Eintrags: | Habilitation |
---|---|
Erschienen: | 2020 |
Autor(en): | Eickmeyer, Kord |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Logics with Invariantly Used Relations |
Sprache: | Englisch |
Publikationsjahr: | 2020 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2020 |
Ort der Erstveröffentlichung: | Darmstadt |
DOI: | 10.25534/tuprints-00013503 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/13503 |
Kurzbeschreibung (Abstract): | This thesis deals with various aspects of the finite model theory of logics with invariantly used relations. To construct such a logic we start with an arbitrary logic L, such as first-order or monadic second-order logic and enrich it by giving it the ability to speak about additional relations such as a linear order which is not actually defined on the structure in question, provided that its truth value be independent of which particular linear order we choose. We investigate how the expressive power of the resulting logics relates to that of the base logic L, and give efficient algorithms for model-checking. |
URN: | urn:nbn:de:tuda-tuprints-135032 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Logik 04 Fachbereich Mathematik > Logik > Algorithmic Model Theory |
Hinterlegungsdatum: | 22 Sep 2020 13:54 |
Letzte Änderung: | 16 Feb 2024 11:45 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Logics with Invariantly Used Relations. (deposited 22 Sep 2020 13:54) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |