Kruk, N. ; Carrillo, J.A. ; Koeppl, H. (2021)
A Finite Volume Method for Continuum Limit Equations of Nonlocally Interacting Active Chiral Particles.
In: Journal of Computational Physics, 440
doi: 10.1016/j.jcp.2021.110275
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
The continuum description of active particle systems is an efficient instrument to analyze a finite size particle dynamics in the limit of a large number of particles. However, it is often the case that such equations appear as nonlinear integro-differential equations and purely analytical treatment becomes quite limited. We propose a general framework of finite volume methods (FVMs) to numerically solve partial differential equations (PDEs) of the continuum limit of nonlocally interacting chiral active particle systems confined to two dimensions. We demonstrate the performance of the method on spatially homogeneous problems, where the comparison to analytical results is available, and on general spatially inhomogeneous equations, where pattern formation is predicted by kinetic theory. We numerically investigate phase transitions of particular problems in both spatially homogeneous and inhomogeneous regimes and report the existence of different first and second order transitions.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2021 |
Autor(en): | Kruk, N. ; Carrillo, J.A. ; Koeppl, H. |
Art des Eintrags: | Bibliographie |
Titel: | A Finite Volume Method for Continuum Limit Equations of Nonlocally Interacting Active Chiral Particles |
Sprache: | Englisch |
Publikationsjahr: | 1 September 2021 |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of Computational Physics |
Jahrgang/Volume einer Zeitschrift: | 440 |
DOI: | 10.1016/j.jcp.2021.110275 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | The continuum description of active particle systems is an efficient instrument to analyze a finite size particle dynamics in the limit of a large number of particles. However, it is often the case that such equations appear as nonlinear integro-differential equations and purely analytical treatment becomes quite limited. We propose a general framework of finite volume methods (FVMs) to numerically solve partial differential equations (PDEs) of the continuum limit of nonlocally interacting chiral active particle systems confined to two dimensions. We demonstrate the performance of the method on spatially homogeneous problems, where the comparison to analytical results is available, and on general spatially inhomogeneous equations, where pattern formation is predicted by kinetic theory. We numerically investigate phase transitions of particular problems in both spatially homogeneous and inhomogeneous regimes and report the existence of different first and second order transitions. |
Freie Schlagworte: | Numerical Analysis (math.NA), Soft Condensed Matter (cond-mat.soft), Analysis of PDEs (math.AP) |
Zusätzliche Informationen: | Art.No.: 110275 |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik |
Hinterlegungsdatum: | 22 Sep 2020 09:42 |
Letzte Änderung: | 23 Sep 2021 14:30 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |