TU Darmstadt / ULB / TUbiblio

On the Generalization of Detecting Face Morphing Attacks as Anomalies: Novelty vs. Outlier Detection

Damer, Naser ; Grebe, Jonas Henry ; Zienert, Steffen ; Kirchbuchner, Florian ; Kuijper, Arjan (2019)
On the Generalization of Detecting Face Morphing Attacks as Anomalies: Novelty vs. Outlier Detection.
10th International Conference on Biometrics Theory, Applications and Systems (BTAS 2019). Tampa, USA (23.09.2019-26.09.2019)
doi: 10.1109/BTAS46853.2019.9185995
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Face morphing attacks are verifiable to multiple identities, leading to faulty identity links. Recent works have studied the face morphing attack detection performance over variations in morphing approaches, pointing out low generalization. This work studies detecting these attacks as anomalies and discusses the performance and generalization over different morphing types. We also analyze the accuracy and generalization effect of including different amounts of attack contamination in the anomaly training data (novelty vs. outlier). This is performed with two baseline 2-class classifiers, two approaches for anomaly detection, two image feature extractions, two morphing types, and variations in contamination levels and tolerated training errors. The results points out the relative lower performance, but higher generalization ability, of anomaly detection in comparison to 2-class classifiers, along with the benefits of contaminating the anomaly training data.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2019
Autor(en): Damer, Naser ; Grebe, Jonas Henry ; Zienert, Steffen ; Kirchbuchner, Florian ; Kuijper, Arjan
Art des Eintrags: Bibliographie
Titel: On the Generalization of Detecting Face Morphing Attacks as Anomalies: Novelty vs. Outlier Detection
Sprache: Englisch
Publikationsjahr: 3 September 2019
Verlag: IEEE
Veranstaltungstitel: 10th International Conference on Biometrics Theory, Applications and Systems (BTAS 2019)
Veranstaltungsort: Tampa, USA
Veranstaltungsdatum: 23.09.2019-26.09.2019
DOI: 10.1109/BTAS46853.2019.9185995
URL / URN: https://doi.org/10.1109/BTAS46853.2019.9185995
Kurzbeschreibung (Abstract):

Face morphing attacks are verifiable to multiple identities, leading to faulty identity links. Recent works have studied the face morphing attack detection performance over variations in morphing approaches, pointing out low generalization. This work studies detecting these attacks as anomalies and discusses the performance and generalization over different morphing types. We also analyze the accuracy and generalization effect of including different amounts of attack contamination in the anomaly training data (novelty vs. outlier). This is performed with two baseline 2-class classifiers, two approaches for anomaly detection, two image feature extractions, two morphing types, and variations in contamination levels and tolerated training errors. The results points out the relative lower performance, but higher generalization ability, of anomaly detection in comparison to 2-class classifiers, along with the benefits of contaminating the anomaly training data.

Freie Schlagworte: Biometrics, Machine learning, Face recognition, Spoofing attacks
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 22 Sep 2020 13:28
Letzte Änderung: 22 Sep 2020 13:28
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen